Skip to main content

Perinatal Intracerebral Hemorrhage Model and Developmental Disability

  • Protocol
Animal Models of Neurodevelopmental Disorders

Part of the book series: Neuromethods ((NM,volume 104))

  • 770 Accesses

Abstract

Perinatal intracerebral hemorrhage, also known as germinal matrix hemorrhage (GMH), refers to the bleeding that arises from the sub-ependymal (or periventricular) germinal region of the immature brain. Intraventricular hemorrhage (IVH) refers to the bleeding that extends into the ventricles, usually as an extension of GMH. Clinical studies have shown that infants who experience GMH/IVH may develop hydrocephalus or suffer from long-term neurological dysfunctions, including cerebral palsy, seizures, and learning disabilities. Understanding the pathogenesis of subsequent brain damage is important for the prevention and management of GMH/IVH. Appropriate animal models are necessary to achieve this understanding. Rodent models of GMH/IVH are economical, homogenous within a strain, and suitable for studying some long-term outcomes. This chapter reviews rodent models of GMH/IVH and their neurobehavioral outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Volpe JJ (2001) Neurology of the newborn, 4th edn. W.B. Saunders, Philadelphia, PA

    Google Scholar 

  2. Del Bigio MR (2004) Hemorrhagic lesions. In: Golden JA, Harding BN (eds) Developmental neuropathology. International Society of Neuropathology Press, Basel, Switzerland, pp 150–155

    Google Scholar 

  3. Leviton A, Gilles FH, Dooling EC (1983) The epidemiology of ganglionic eminence hemorrhage. In: Gilles FH, Leviton A, Dooling EC (eds) The developing human brain. Growth and epidemiologic neuropathology. John Wright Inc., Boston, MA, pp 204–216

    Chapter  Google Scholar 

  4. Volpe JJ (2001) Perinatal brain injury: from pathogenesis to neuroprotection. Ment Retard Dev Disabil Res Rev 7:56–64

    Article  CAS  PubMed  Google Scholar 

  5. Kakita A, Goldman JE (1999) Patterns and dynamics of SVZ cell migration in the postnatal forebrain: monitoring living progenitors in slice preparations. Neuron 23:461–472

    Article  CAS  PubMed  Google Scholar 

  6. Papile LA, Burstein J, Burstein R, Koffler H (1978) Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm. J Pediatr 92:529–534

    Article  CAS  PubMed  Google Scholar 

  7. Balasubramaniam J, Del Bigio MR (2006) Animal models of germinal matrix hemorrhage. J Child Neurol 21:365–371

    PubMed  Google Scholar 

  8. Dobbing J, Sands J (1979) Comparative aspects of the brain growth spurt. Early Hum Dev 3:79–83

    Article  CAS  PubMed  Google Scholar 

  9. Romijn HJ, Hofman MA, Gramsbergen A (1991) At what age is the developing cerebral cortex of the rat comparable to that of the full-term newborn human baby? Early Hum Dev 26:61–67

    Article  CAS  PubMed  Google Scholar 

  10. Levers TE, Edgar JM, Price DJ (2001) The fates of cells generated at the end of neurogenesis in developing mouse cortex. J Neurobiol 48:265–277

    Article  CAS  PubMed  Google Scholar 

  11. Zhu Y, Li H, Zhou L, Wu JY, Rao Y (1999) Cellular and molecular guidance of GABAergic neuronal migration from an extracortical origin to the neocortex. Neuron 23:473–485

    Article  CAS  PubMed  Google Scholar 

  12. Sturrock RR, Smart IH (1980) A morphological study of the mouse subependymal layer from embryonic life to old age. J Anat 130:391–415

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Fox WM (1965) Reflex ontogeny and behavioral development of the mouse. Anim Behav 13:234–241

    Article  CAS  PubMed  Google Scholar 

  14. Altman J, Sudarshan K (1975) Postnatal development of locomotion in the laboratory rat. Anim Behav 23:896–920

    Article  CAS  PubMed  Google Scholar 

  15. MacDonald BK, Cockerell OC, Sander JW, Shorvon SD (2000) The incidence and lifetime prevalence of neurological disorders in a prospective community-based study in the UK. Brain 123:665–676

    Article  PubMed  Google Scholar 

  16. Rubin RJ, Gold WA, Kelley DK, Sher JP (1992) The cost of disorders of the brain. National Foundation for Brain Research/Lewin-ICF, Washington, DC

    Google Scholar 

  17. Luu TM, Ment LR, Schneider KC, Katz KH, Allan WC, Vohr BR (2009) Lasting effects of preterm birth and neonatal brain hemorrhage at 12 years of age. Pediatrics 123:1037–1044

    Article  PubMed Central  PubMed  Google Scholar 

  18. Shapiro BK (2004) Cerebral palsy: a reconceptualization of the spectrum. J Pediatr 145:S3–S7

    Article  PubMed  Google Scholar 

  19. Davison AN, Dobbing J (1966) Myelination as a vulnerable period in brain development. Br Med Bull 22:40–44

    CAS  PubMed  Google Scholar 

  20. Eayrs JT, Goodhead B (1959) Postnatal development of the cerebral cortex in the rat. J Anat 93:385–402

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Westerga J, Gramsbergen A (1990) The development of locomotion in the rat. Brain Res Dev Brain Res 57:163–174

    Article  CAS  PubMed  Google Scholar 

  22. Smart JL, Dobbing J (1971) Vulnerability of developing brain. VI. Relative effects of foetal and early postnatal undernutrition on reflex ontogeny and development of behaviour in the rat. Brain Res 33:303–314

    Article  CAS  PubMed  Google Scholar 

  23. Bolles R, Woods P (1964) The ontogeny of behavior in the albino rat. Anim Behav 12:427

    Article  Google Scholar 

  24. Bignall KE (1974) Ontogeny of levels of neural organization: the righting reflex as a model. Exp Neurol 42:566–573

    Article  CAS  PubMed  Google Scholar 

  25. Unis AS, Petracca F, Diaz J (1991) Somatic and behavioral ontogeny in three rat strains: preliminary observations of dopamine-mediated behaviors and brain D-1 receptors. Prog Neuropsychopharmacol Biol Psychiatry 15:129–138

    Article  CAS  PubMed  Google Scholar 

  26. Vorhees CV, Acuff-Smith KD, Moran MS, Minck DR (1994) A new method for evaluating air-righting reflex ontogeny in rats using prenatal exposure to phenytoin to demonstrate delayed development. Neurotoxicol Teratol 16:563–573

    Article  CAS  PubMed  Google Scholar 

  27. Whishaw IQ (2000) Loss of the innate cortical engram for action patterns used in skilled reaching and the development of behavioral compensation following motor cortex lesions in the rat. Neuropharmacology 39:788–805

    Article  CAS  PubMed  Google Scholar 

  28. Ballermann M, Tompkins G, Whishaw IQ (2000) Skilled forelimb reaching for pasta guided by tactile input in the rat as measured by accuracy, spatial adjustments, and force. Behav Brain Res 109:49–57

    Article  CAS  PubMed  Google Scholar 

  29. Xue M, Balasubramaniam J, Buist RJ, Peeling J, Del Bigio MR (2003) Periventricular/intraventricular hemorrhage in neonatal mouse cerebrum. J Neuropathol Exp Neurol 62:1154–1165

    PubMed  Google Scholar 

  30. Lee JC, Cho GS, Choi BO, Kim HC, Kim YS, Kim WK (2006) Intracerebral hemorrhage-induced brain injury is aggravated in senescence-accelerated prone mice. Stroke 37:216–222

    Article  PubMed  Google Scholar 

  31. Qu Y, Chen-Roetling J, Benvenisti-Zarom L, Regan RF (2007) Attenuation of oxidative injury after induction of experimental intracerebral hemorrhage in heme oxygenase-2 knockout mice. J Neurosurg 106:428–435

    Article  PubMed  Google Scholar 

  32. Rynkowski MA, Kim GH, Komotar RJ, Otten ML, Ducruet AF, Zacharia BE, Kellner CP, Hahn DK, Merkow MB, Garrett MC, Starke RM, Cho BM, Sosunov SA, Connolly ES (2008) A mouse model of intracerebral hemorrhage using autologous blood infusion. Nat Protoc 3:122–128

    Article  CAS  PubMed  Google Scholar 

  33. Zhao X, Sun G, Zhang J, Strong R, Dash PK, Kan YW, Grotta JC, Aronowski J (2007) Transcription factor Nrf2 protects the brain from damage produced by intracerebral hemorrhage. Stroke 38:3280–3286

    Article  CAS  PubMed  Google Scholar 

  34. Belayev A, Saul I, Liu Y, Zhao W, Ginsberg MD, Valdes MA, Busto R, Belayev L (2003) Enriched environment delays the onset of hippocampal damage after global cerebral ischemia in rats. Brain Res 964:121–127

    Article  CAS  PubMed  Google Scholar 

  35. Xue M, Balasubramaniam J, Del Bigio MR (2003) Brain inflammation following intracerebral hemorrhage. Clin Neuropharmacol 1:325–332

    Article  CAS  Google Scholar 

  36. Johnson DL, Getson P, Shaer C, O’Donnell R (1987) Intraventricular hemorrhage in the newborn beagle puppy. A limited model of intraventricular hemorrhage in the premature infant. Pediatr Neurosci 13:78–83

    Article  CAS  PubMed  Google Scholar 

  37. Ment LR, Stewart WB, Duncan CC, Lambrecht R (1982) Beagle puppy model of intraventricular hemorrhage. J Neurosurg 57:219–223

    Article  CAS  PubMed  Google Scholar 

  38. Lorenzo AV, Welch K, Conner S (1982) Spontaneous germinal matrix and intraventricular hemorrhage in prematurely born rabbits. J Neurosurg 56:404–410

    Article  CAS  PubMed  Google Scholar 

  39. Cherian SS, Love S, Silver IA, Porter HJ, Whitelaw AG, Thoresen M (2003) Posthemorrhagic ventricular dilation in the neonate: development and characterization of a rat model. J Neuropathol Exp Neurol 62:292–303

    PubMed  Google Scholar 

  40. Cherian S, Whitelaw A, Thoresen M, Love S (2004) The pathogenesis of neonatal post-hemorrhagic hydrocephalus. Brain Pathol 14:305–311

    Article  CAS  PubMed  Google Scholar 

  41. Aquilina K, Chakkarapani E, Love S, Thoresen M (2011) Neonatal rat model of intraventricular haemorrhage and post-haemorrhagic ventricular dilatation with long-term survival into adulthood. Neuropathol Appl Neurobiol 37:156–165

    Article  CAS  PubMed  Google Scholar 

  42. Xue M, Balasubramaniam J, Parsons KA, McIntyre IW, Peeling J, Del Bigio MR (2005) Does thrombin play a role in the pathogenesis of brain damage after periventricular hemorrhage? Brain Pathol 15:241–249

    Article  CAS  PubMed  Google Scholar 

  43. Kolb B, Tomie JA (1988) Recovery from early cortical damage in rats. IV. Effects of hemidecortication at 1, 5 or 10 days of age on cerebral anatomy and behavior. Behav Brain Res 28:259–274

    Article  CAS  PubMed  Google Scholar 

  44. Del Bigio MR, Yan HJ, Buist R, Peeling J (1996) Experimental intracerebral hemorrhage in rats. Magnetic resonance imaging and histopathological correlates. Stroke 27:2312–2320

    Article  PubMed  Google Scholar 

  45. Rosenberg GA, Estrada E, Kelley RO, Kornfeld M (1993) Bacterial collagenase disrupts extracellular matrix and opens blood-brain barrier in rat. Neurosci Lett 160:117–119

    Article  CAS  PubMed  Google Scholar 

  46. Clark W, Gunion Rinker L, Lessov N, Hazel K (1998) Citicoline treatment for experimental intracerebral hemorrhage in mice. Stroke 29:2136–2139

    Article  CAS  PubMed  Google Scholar 

  47. Xue M, Del Bigio MR (2003) Comparison of brain cell death and inflammatory reaction in three models of intracerebral hemorrhage in adult rats. J Stroke Cerebrovasc Dis 12:152–159

    Article  PubMed  Google Scholar 

  48. McCarty JH, Monahan-Earley RA, Brown LF, Keller M, Gerhardt H, Rubin K, Shani M, Dvorak HF, Wolburg H, Bader BL, Dvorak AM, Hynes RO (2002) Defective associations between blood vessels and brain parenchyma lead to cerebral hemorrhage in mice lacking alphav integrins. Mol Cell Biol 22:7667–7677

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Balasubramaniam J, Xue M, Buist RJ, Ivanco TL, Natuik S, Del Bigio MR (2006) Persistent motor deficit following infusion of autologous blood into the periventricular region of neonatal rats. Exp Neurol 197:122–132

    Article  PubMed  Google Scholar 

  50. Schroeder H, Humbert AC, Koziel V, Desor D, Nehlig A (1995) Behavioral and metabolic consequences of neonatal exposure to diazepam in rat pups. Exp Neurol 131:53–63

    Article  CAS  PubMed  Google Scholar 

  51. Schallert T, Fleming SM, Leasure JL, Tillerson JL, Bland ST (2000) CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury. Neuropharmacology 39:777–787

    Article  CAS  PubMed  Google Scholar 

  52. Whishaw IQ, O’Connor WT, Dunnett SB (1986) The contributions of motor cortex, nigrostriatal dopamine and caudate-putamen to skilled forelimb use in the rat. Brain 109(Pt 5):805–843

    Article  PubMed  Google Scholar 

  53. Vergara-Aragon P, Gonzalez CLR, Whishaw IQ (2003) A novel skilled-reaching impairment in paw supination on the “good” side of the hemi-Parkinson rat improved with rehabilitation. J Neurosci 23:579–586

    CAS  PubMed  Google Scholar 

  54. Whishaw IQ, Woodward NC, Miklyaeva E, Pellis SM (1997) Analysis of limb use by control rats and unilateral DA-depleted rats in the Montoya staircase test: movements, impairments and compensatory strategies. Behav Brain Res 89:167–177

    Article  CAS  PubMed  Google Scholar 

  55. Montoya CP, Campbell-Hope LJ, Pemberton KD, Dunnett SB (1991) The “staircase test”: a measure of independent forelimb reaching and grasping abilities in rats. J Neurosci Methods 36:219–228

    Article  CAS  PubMed  Google Scholar 

  56. Metz GA, Whishaw IQ (2002) Cortical and subcortical lesions impair skilled walking in the ladder rung walking test: a new task to evaluate fore- and hindlimb stepping, placing, and co-ordination. J Neurosci Methods 115:169–179

    Article  PubMed  Google Scholar 

  57. Maclellan CL, Plummer N, Silasi G, Auriat AM, Colbourne F (2011) Rehabilitation promotes recovery after whole blood-induced intracerebral hemorrhage in rats. Neurorehabil Neural Repair 25:477

    Article  PubMed  Google Scholar 

  58. Auriat AM, Wowk S, Colbourne F (2010) Rehabilitation after intracerebral hemorrhage in rats improves recovery with enhanced dendritic complexity but no effect on cell proliferation. Behav Brain Res 214:42–47

    Article  PubMed  Google Scholar 

  59. Kolb B, Teskey GC (2012) Age, experience, injury, and the changing brain. Dev Psychobiol 54:311

    Article  PubMed  Google Scholar 

  60. Manco-Johnson MJ, Jacobson LJ, Hacker MR, Townsend SF, Murphy J, Hay W Jr (2002) Development of coagulation regulatory proteins in the fetal and neonatal lamb. Pediatr Res 52:580–588

    Article  CAS  PubMed  Google Scholar 

  61. Manco-Johnson MJ (2005) Development of hemostasis in the fetus. Thromb Res 115(Suppl 1):55–63

    PubMed  Google Scholar 

  62. Kuhle S, Male C, Mitchell L (2003) Developmental hemostasis: pro- and anticoagulant systems during childhood. Semin Thromb Hemost 29:329–338

    Article  CAS  PubMed  Google Scholar 

  63. Juliet PA, Frost EE, Balasubramaniam J, Del Bigio MR (2009) Toxic effect of blood components on perinatal rat subventricular zone cells and oligodendrocyte precursor cell proliferation, differentiation and migration in culture. J Neurochem 109:1285–1299

    Article  CAS  PubMed  Google Scholar 

  64. Pinto-Martin JA, Riolo S, Cnaan A, Holzman C, Susser MW, Paneth N (1995) Cranial ultrasound prediction of disabling and nondisabling cerebral palsy at age two in a low birth weight population. Pediatrics 95:249–254

    CAS  PubMed  Google Scholar 

  65. Vasileiadis GT, Gelman N, Han VK, Williams LA, Mann R, Bureau Y, Thompson RT (2004) Uncomplicated intraventricular hemorrhage is followed by reduced cortical volume at near-term age. Pediatrics 114:e367–e372

    Article  PubMed  Google Scholar 

  66. Inder TE, Huppi PS, Warfield S, Kikinis R, Zientara GP, Barnes PD, Jolesz F, Volpe JJ (1999) Periventricular white matter injury in the premature infant is followed by reduced cerebral cortical gray matter volume at term. Ann Neurol 46:755–760

    Article  CAS  PubMed  Google Scholar 

  67. Peterson BS, Vohr B, Staib LH, Cannistraci CJ, Dolberg A, Schneider KC, Katz KH, Westerveld M, Sparrow S, Anderson AW, Duncan CC, Makuch RW, Gore JC, Ment LR (2000) Regional brain volume abnormalities and long-term cognitive outcome in preterm infants. JAMA 284:1939–1947

    Article  CAS  PubMed  Google Scholar 

  68. Weisglas-Kuperus N, Baerts W, Sauer PJ (1993) Early assessment and neurodevelopmental outcome in very low-birth-weight infants: implications for pediatric practice. Acta Paediatr 82:449–453

    Article  CAS  PubMed  Google Scholar 

  69. Whitaker AH, Van Rossem R, Feldman JF, Schonfeld IS, Pinto-Martin JA, Tore C, Shaffer D, Paneth N (1997) Psychiatric outcomes in low-birth-weight children at age 6 years: relation to neonatal cranial ultrasound abnormalities. Arch Gen Psychiatry 54:847–856

    Article  CAS  PubMed  Google Scholar 

  70. Tomimatsu T, Fukuda H, Endoh M, Mu J, Watanabe N, Kohzuki M, Fujii E, Kanzaki T, Oshima K, Doi K, Kubo T, Murata Y (2002) Effects of neonatal hypoxic-ischemic brain injury on skilled motor tasks and brainstem function in adult rats. Brain Res 926:108–117

    Article  CAS  PubMed  Google Scholar 

  71. Dubowitz LM, Levene MI, Morante A, Palmer P, Dubowitz V (1981) Neurologic signs in neonatal intraventricular hemorrhage: a correlation with real-time ultrasound. J Pediatr 99:127–133

    Article  CAS  PubMed  Google Scholar 

  72. Palmer P, Dubowitz LM, Levene MI, Dubowitz V (1982) Developmental and neurological progress of preterm infants with intraventricular haemorrhage and ventricular dilatation. Arch Dis Child 57:748–753

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Coulter DM, LaPine T, Gooch WM 3rd (1984) Intraventricular hemorrhage in the premature rabbit pup. Limitations of this animal model. J Neurosurg 60:1243–1245

    Article  CAS  PubMed  Google Scholar 

  74. Conner ES, Lorenzo AV, Welch K, Dorval B (1983) The role of intracranial hypotension in neonatal intraventricular hemorrhage. J Neurosurg 58:204–209

    Article  CAS  PubMed  Google Scholar 

  75. Greene CS Jr, Lorenzo AV, Hornig G, Welch K (1985) The lowering of cerebral spinal fluid and brain interstitial pressure of preterm and term rabbits by furosemide. Z Kinderchir 40(Suppl 1):5–8

    PubMed  Google Scholar 

  76. Sugimoto T, Yasuhara A, Matsumura T (1981) Intracranial hemorrhage following administration of sodium bicarbonate in rabbits. Brain Dev 3:297–303

    Article  CAS  PubMed  Google Scholar 

  77. Reynolds ML, Evans CA, Reynolds EO, Saunders NR, Durbin GM, Wigglesworth JS (1979) Intracranial haemorrhage in the preterm sheep fetus. Early Hum Dev 3:163–186

    Article  CAS  PubMed  Google Scholar 

  78. Ting P, Yamaguchi S, Bacher JD, Killens RH, Myers RE (1984) Failure to produce germinal matrix or intraventricular hemorrhage by hypoxia, hypo-, or hypervolemia. Exp Neurol 83:449–460

    Article  CAS  PubMed  Google Scholar 

  79. Wheeler AS, Sadri S, Gutsche BB, DeVore JS, David-Mian Z, Latyshevsky H (1979) Intracranial hemorrhage following intravenous administration of sodium bicarbonate or saline solution in the newborn lamb asphyxiated in utero. Anesthesiology 51:517–521

    Article  CAS  PubMed  Google Scholar 

  80. Stankovic MR, Fujii A, Maulik D, Boas D, Kirby D, Stubblefield PG (1998) Optical monitoring of cerebral hemodynamics and oxygenation in the neonatal piglet. J Matern Fetal Investig 8:71–78

    PubMed  Google Scholar 

  81. Goddard J, Lewis RM, Armstrong DL, Zeller RS (1980) Moderate, rapidly induced hypertension as a cause of intraventricular hemorrhage in the newborn beagle model. J Pediatr 96:1057–1060

    Article  CAS  PubMed  Google Scholar 

  82. Goddard J, Lewis RM, Alcala H, Zeller RS (1980) Intraventricular hemorrhage – an animal model. Biol Neonate 37:39–52

    Article  CAS  PubMed  Google Scholar 

  83. Goddard-Finegold J, Armstrong D, Zeller RS (1982) Intraventricular hemorrhage, following volume expansion after hypovolemic hypotension in the newborn beagle. J Pediatr 100:796–799

    Article  CAS  PubMed  Google Scholar 

  84. Leuschen MP, Nelson RM Jr (1987) Effects of asphyxia on telencephalic microvessels of premature beagle pups. J Perinatol 7:93–99

    CAS  PubMed  Google Scholar 

  85. Turbeville DF, Bowen FW Jr, Killam AP (1976) Intracranial hemorrhages in kittens: hypernatremia versus hypoxia. J Pediatr 89:294–297

    Article  CAS  PubMed  Google Scholar 

  86. Dieni S, Inder T, Yoder B, Briscoe T, Camm E, Egan G, Denton D, Rees S (2004) The pattern of cerebral injury in a primate model of preterm birth and neonatal intensive care. J Neuropathol Exp Neurol 63:1297–1309

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Del Bigio M.D., Ph.D., F.R.C.P.C. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kassiri, J., Del Bigio, M. (2015). Perinatal Intracerebral Hemorrhage Model and Developmental Disability. In: Yager, J. (eds) Animal Models of Neurodevelopmental Disorders. Neuromethods, vol 104. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2709-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2709-8_3

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2708-1

  • Online ISBN: 978-1-4939-2709-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics