Skip to main content

The Effect of Age on Brain Plasticity in Animal Models of Developmental Disability

  • Protocol

Part of the book series: Neuromethods ((NM,volume 104))

Abstract

Brain development is a complex interaction of environmental experiences and genetic influences. Experiences include both prenatal (gestational), perinatal, and later events including stress, gonadal hormones, drugs (prescription and others), sensory stimulation (e.g., tactile stimulation), and sensory deprivation. By manipulating these factors it is possible to get a better understanding of how brain and behavioral phenotypes emerge. Methods are outlined on how to study and assess these early experiences.

This is a preview of subscription content, log in via an institution.

Buying options

eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kennard M (1942) Cortical reorganization of motor function. Arch Neurol 48:227–240

    Article  Google Scholar 

  2. Hebb DO (1949) The organization of behavior. McGraw-Hill, New York

    Google Scholar 

  3. Kolb B (1995) Brain plasticity and behavior. Lawrence Erlbaum Associates, Philadelphia, PA

    Google Scholar 

  4. Schmanke TD, Villablanca JR (2001) A critical maturational period of reduced brain vulnerability to injury. A study of cerebral glucose metabolism in cats. Dev Brain Res 131:127–141

    Article  CAS  Google Scholar 

  5. Villablanca JR, Hovda DA, Jackson GF, Infante C (1993) Neurological and behavioral effects of a unilateral frontal cortical lesion in fetal kittens: II. Visual system tests, and proposing a ‘critical period’ for lesion effects. Behav Brain Res 57:79–92

    Article  CAS  PubMed  Google Scholar 

  6. Goldman PS, Galkin TW (1978) Prenatal removal of frontal association cortex in the fetal rhesus monkey: anatomical and functional consequences in postnatal life. Brain Res 152: 451–485

    Article  CAS  PubMed  Google Scholar 

  7. Schneider J (1973) Early lesions of superior colliculus: factors affecting the formation of abnormal retinal projections. Brain Behav Evol 8:73–109

    Article  CAS  PubMed  Google Scholar 

  8. Castro AJ (1990) Plasticity in the motor system. In: Kolb B, Tees R (eds) The cerebral cortex of the rat. MIT, Cambridge, MA, pp 563–588

    Google Scholar 

  9. Cornwell P, Overman W, Ross C (1942) Extent of recovery from neonatal damage to the cortical visual system in rats. J Comp Physiol Psychol 92:255–270

    Article  Google Scholar 

  10. Hicks S, D’Amato C (1975) Motor-sensory corticospinal system and developing locomotion placing in rats. Am J Anat 143:1–42

    Article  CAS  PubMed  Google Scholar 

  11. Kolb B, Nonneman AJ (1978) Sparing of function in rats with early prefrontal cortex lesions. Brain Res 151:135–148

    Article  CAS  PubMed  Google Scholar 

  12. Kolb B, Tomie J (1988) Recovery from early cortical damage in rats. IV. Effects of hemidecortication at 1, 5, or 10 days of age. Behav Brain Res 28:259–274

    Article  CAS  PubMed  Google Scholar 

  13. Kolb B, Whishaw IQ (1981) Decortication of rats in infancy or adulthood produced comparable functional losses on learned and species typical behaviors. J Comp Physiol Psychol 95:468–483

    Article  CAS  PubMed  Google Scholar 

  14. Vannucci R, Vannucci SJ (1978) Cerebral carbohydrate metabolism during hypoglycemia and anoxia in newborn rats. Ann Neurol 4:73–79

    Article  CAS  PubMed  Google Scholar 

  15. Fishman RH, Yanai J (1983) Long-lasting effects of early barbiturates on central nervous system and behavior. Neurosci Biobehav Rev 7:19–28

    Article  CAS  PubMed  Google Scholar 

  16. Kolb B, Gorny G, Li Y, Samaha AN, Robinson TE (2003) Amphetamine or cocaine limits the ability of later experience to promote structural plasticity in the neocortex and nucleus accumbens. Proc Natl Acad Sci U S A 100:10523–10528

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Kolb B, Mychasiuk R, Muhammad A, Li Y, Frost DO, Gibb R (2012) Experience and the developing prefrontal cortex. Proc Natl Acad Sci USA 109(Suppl 2):17186–17193

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Greenough WT, Chang FF (1989) Plasticity of synapse structure and pattern in the cerebral cortex. In: Peters A, Jones EG (eds) Cerebral cortex, vol 7. Plenum, New York, pp 391–440

    Chapter  Google Scholar 

  19. Sirevaag AM, Greenough WT (1987) A multivariate statistical summary of synaptic plasticity measures in rats exposed to complex, social and individual environments. Brain Res 441:386–392

    Article  Google Scholar 

  20. Wiesel TN, Hubel DH (1963) Single-cell responses in striate cortex of kittens deprived of vision in one eye. J Neurophysiol 26:1003–1017

    CAS  PubMed  Google Scholar 

  21. Giffin F, Mitchell DE (1978) The rate of recovery of vision after early monocular deprivation in kittens. J Physiol 274:511–537

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Prusky GT, Silver BD, Tschetter WW, Alam NM, Douglas RM (2008) Experience-dependent plasticity from eye opening enables lasting, visual cortex-dependent enhancement of motion vision. J Neurosci 28:9817–9827

    Article  CAS  PubMed  Google Scholar 

  23. Schanberg SM, Field TM (1987) Sensory deprivation stress and supplemental stimulation in the rat pup and preterm human neonate. Child Dev 58:1431–1447

    Article  CAS  PubMed  Google Scholar 

  24. Kolb B, Gibb R (2010) Tactile stimulation facilitates functional recovery and dendritic change after neonatal medial frontal or posterior parietal lesions in rats. Behav Brain Res 214:115–120

    Article  PubMed  Google Scholar 

  25. Bock J, Gruss M, Becker S, Braun K (2005) Experience-induced changes of dendritic spine densities in the prefrontal and sensory cortex: correlation wit developmental time windows. Cereb Cortex 15:802–808

    Article  PubMed  Google Scholar 

  26. Higley JD, Hasert MF, Suomi SJ, Linnoila M (1991) Nonhuman primate modle of alcohol abuse: effects of early experience, personality, and stress on alcohol consumption. Proc Natl Acad Sci U S A 88:7261–7265

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Huot RL, Thrivikraman KV, Meaney MJ, Plotsky PM (2001) Development of adult ethanol preference and anxiety as a consequence of neonatal maternal separation in Long Evans rats and reversal with antidepressant treatment. Psychopharmacology 158:366–373

    Article  CAS  PubMed  Google Scholar 

  28. Muhammad A, Kolb B (2011) Prenatal tactile stimulation attenuates drug-induced behavioral sensitization, modifies behavior, and alters brain architecture. Brain Res 1400:53–65

    Article  CAS  PubMed  Google Scholar 

  29. Goy RW (1966) Role of androgens in the establishment and regulation of behavioral sex differences in mammals. J Anim Sci 25(Suppl):21–35

    PubMed  Google Scholar 

  30. Goy RW, Phoenix CH, Meidinger R (1967) Postnatal development of sensitivity to estrogen and androgen in male, female and psuedohermaphroditic guinea pigs. Anat Rec 157:87–96

    Article  CAS  PubMed  Google Scholar 

  31. Kolb B, Stewart J (1991) Sex-related differences in dendritic branching of cells in the prefrontal cortex of rats. J Neuroendocrinol 3:95–99

    Article  CAS  PubMed  Google Scholar 

  32. Goldstein JM, Seidman LJ, Horton NJ, Makris N, Kennedy DN, Caviness VS Jr, Faraone SV, Tsuang MT (2001) Normal sexual dimorphism of the adult human brain assessed by in vivo magnetic resonance imaging. Cereb Cortex 11:490–497

    Article  CAS  PubMed  Google Scholar 

  33. Saucier DM, Yager JY, Armstrong EA (2010) Housing environment and sex affect behavioral recovery from ischemic brain damage. Behav Brain Res 214:48–54

    Article  PubMed  Google Scholar 

  34. Kolb B, Stewart J (1995) Changes in neonatal gonadal hormonal environment prevent behavioral sparing and alter cortical morphogenesis after early frontal cortex lesions in male and female rats. Behav Neurosci 109:285–294

    Article  CAS  PubMed  Google Scholar 

  35. Kolb B, Cote S, Ribeiro-da-Silva A, Cuello AC (1997) NGF stimulates recovery of function and dendritic growth after unilateral motor cortex lesions in rats. Neuroscience 76:1139–1151

    Article  CAS  PubMed  Google Scholar 

  36. Labat-gest V, Tomasi S. Photothrombotic ischemia: a minimally invasive and reproducible photochemical cortical lesion model for mouse stroke studies. J Vis Exp 2013. doi: 10.3791/50370

  37. Kolb B, Cioe J (2001) Cryoanethesia on postnatal day 1, but not day 10, affects adult behavior and cortical morphology in rats. Dev Brain Res 130:9–14

    Article  CAS  Google Scholar 

  38. Frost DO, Cerceo S, Carroll C, Kolb B (2009) Early exposure to haloperidol or olanzapine induces long-term alterations of dendritic form. Synapse 64:191–199

    Article  Google Scholar 

  39. De Villers-Sidani E, Merzenich MM (2011) Lifelong plasticity in the rat auditory cortex: basic mechanisms and role of sensory experience. Prog Brain Res 191:119–131

    Article  PubMed  Google Scholar 

  40. Comeau W, McDonald R, Kolb B (2010) Learning-induced structural changes in the prefrontal cortex. Behav Brain Res 214:91–101

    Article  PubMed  Google Scholar 

  41. Kolb B, Gibb R, Gorny G (2003) Experience-dependent changes in dendritic arbor and spine density in neocortex vary with age and sex. Neurobiol Learn Mem 79:1–10

    Article  PubMed  Google Scholar 

  42. Kolb B, Elliott W (1987) Recovery from early cortical damage in rats. II. Effects of experience on anatomy and behavior following frontal lesions at 1 or 5 days of age. Behav Brain Res 26:47–56

    Article  CAS  PubMed  Google Scholar 

  43. Denenberg VH, Karas GG (1959) Interactive effects of infantile and adult experiences upon weight gain and mortality in the rat. J Comp Physiol Psychol 54:685–689

    Article  Google Scholar 

  44. Levine S, Lewis GW (1959) The relative importance of experimenter contact in an effect produced by extra-stimulation in infancy. J Comp Physiol Psychol 52:368–369

    Article  CAS  PubMed  Google Scholar 

  45. Gibb R, Kolb B (2005) Neonatal handling alters brain organization but does not influence recovery from perinatal cortical injury. Behav Neurosci 19:1375–1383

    Article  Google Scholar 

  46. Lehmann J, Pryce CR, Jongen-Rêlo AL, Stöhr T, Pothuizen HH, Feldon J (2002) Comparison of maternal separation and early handling in terms of their neurobehavioral effects in aged rats. Neurobiol Aging 23:457–466

    Article  PubMed  Google Scholar 

  47. Meaney MJ, Aitken DH, van Berkel C, Bhatnagar S, Sapolsky RM (1988) Effect of neonatal handling on age-related impairments associated with the hippocampus. Science 239:766–768

    Article  CAS  PubMed  Google Scholar 

  48. McCarty R, Horbaly WG, Brown MS, Baucom K (1981) Effects of handling during infancy on the sympathetic-adrenal medullary system of rats. Dev Psychobiol 14:533–539

    Article  CAS  PubMed  Google Scholar 

  49. Meaney MJ, Aitken DH, Viau V, Sharma S, Sarrieau A (1989) Neonatal handling alters adrenocortical negative feedback sensitivity and hippocampal type II glucocorticoid receptor binding in the rat. Neuroendocrinology 50:597–604

    Article  CAS  PubMed  Google Scholar 

  50. Chou IC, Trakht T, Signori C, Smith J, Felt BT, Vazquez DM, Barks JD (2001) Behavioral–environmental intervention improves learning after cerebral hypoxia-ischemia in rats. Stroke 32:2192–2197

    Article  CAS  PubMed  Google Scholar 

  51. Wong TP, Howland JG, Robillard JM, Ge Y, Yu W, Titterness AK, Brebner K, Liu L, Weinberg J, Christie BR, Phillips AG, Wang YT (2007) Hippocampal long-term depression mediates acute stress-induced spatial memory retrieval impairment. Proc Natl Acad Sci U S A 104:11471–11476

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Metz GA, Jadavji NM, Smith LK (2005) Modulation of motor function by stress: a novel concept of the effects of stress and corticosterone on behavior. Eur J Neurosci 22:1190–1200

    Article  PubMed  Google Scholar 

  53. Plotsky PM, Meaney M (1993) Early, postnatal experience alters hypothalamic corticotropin-releasing factor (CRF) mRNA, median eminence CRF content and stress-induced release in adult rats. Mol Brain Res 18:195–200

    Article  CAS  PubMed  Google Scholar 

  54. Muhammad A, Kolb B (2011) Maternal separation during development alters dendritic morphology in the nucleus accumbens and prefrontal cortex. Neuroscience 216:103–109

    Article  Google Scholar 

  55. McEwen BS (2001) Estrogens effects on the brain: Multiple sites and molecular mechanisms. J Appl Physiol 91:2785–2801

    CAS  PubMed  Google Scholar 

  56. Leranth C, MacLusky NJ, Hajszan T (2008) Sex differences in neuroplasticity. In: Becker JB, Berkley KJ, Geary N, Hampson E, Herman JP, Young EA (eds) Sex differences in the brain From genes to behavior. Oxford, New York, pp 201–226

    Google Scholar 

  57. Breedlove SM (1997) Neonatal androgen and estrogen treatments masculinize the size of motor neurons in the rat spinal nucleus of the bulbocavernosus. Cell Mol Neurobiol 17:687–697

    Article  CAS  PubMed  Google Scholar 

  58. Jost A, Vigier B, Prepin J, Perchellet JP (1973) Studies on sex differentiation in mammals. Recent Prog Horm Res 29:1–41

    CAS  PubMed  Google Scholar 

  59. Meaney MJ (1989) The sexual differentiation of social play. Psychiatr Dev 7:247–261

    CAS  PubMed  Google Scholar 

  60. Zuloaga DG, Puts DA, Jordon CL, Breedlove SM (2008) The role of androgen receptors in the masculinization of brain and behavior: what we’ve learned from the testicular feminization mutation. Horm Behav 53:613–626

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Arnold AP, Gorski RA (1984) Gonadal steroid induction of structural sex differences in the central nervous system. Annu Rev Neurosci 7:413–442

    Article  CAS  PubMed  Google Scholar 

  62. Gorski R (1971) Gonadal hormones and the perinatal development of neuroendocrine function. Oxford, New York

    Google Scholar 

  63. Swaab DF (2004) Sexual differentiation of the human brain: Relevance for gender identity, transsexualism and sexual orientation. Gynecol Endocrinol 19:301–312

    Article  CAS  PubMed  Google Scholar 

  64. Halbreich U, Lumley LA, Palter S, Manning C, Gengo F, Joe S (1995) Possible acceleration of age effects on cognition following menopause. J Psychiatr Res 29:153–163

    Article  CAS  PubMed  Google Scholar 

  65. Hausmann M, Slabbekoorn D, Van Goozen SH, Cohen-Kettenis PT, Güntürkün O (2000) Sex hormones affect spatial abilities during the menstrual cycle. Behav Neurosci 114:1245–1250

    Article  CAS  PubMed  Google Scholar 

  66. Woolley CS, McEwen BS (1994) Estradiol mediates fluctuation in hippocampal synapse density during the estrous cycle in the adult rat. J Neurosci 12:2549–2554

    Google Scholar 

  67. Galea LAM (2007) Gonadal hormone modulation of neurogenesis in the dentate gyrus of adult male and female rodents. Brain Res Rev 57:332–341

    Article  PubMed  Google Scholar 

  68. Burger DK, Saucier JM, Iwaniuk AN, Saucier DM (2013) Seasonal and sex differences in the hippocampus of a wild rodent. Behav Brain Res 236:131–138

    Article  PubMed  Google Scholar 

  69. Burger DK, Gulbrandsen T, Saucier DM, Iwaniuk AN (2014) The effects of season and sex on detate gyrus size and neurogenesis in a wild rodent, Richardson’s ground squirrel (Urocitellus rishadsonii). Neuroscience 9:240–251

    Article  Google Scholar 

  70. Harper JM, Austad SN (2000) Fecal glucocorticoids: a non-invasive method of measure adrenal activity in wild and captive rodents. Physiol Biochem Zool 73:12–22

    Article  CAS  PubMed  Google Scholar 

  71. Kamel F, Wright WW, Mock EJ, Frankel AI (1977) The influence of mating and related stimuli on plasma levels of luteinizing hormone, follicle stimulating hormone, prolactin, and testosterone in the male rat. Endocrinology 101:421–429

    Article  CAS  PubMed  Google Scholar 

  72. Westwood FR (2008) The female rat reproductive cycle: a practical histological guide. Toxicol Pathol 36:375–384

    Article  PubMed  Google Scholar 

  73. Goldman JM, Murr AS, Cooper RL (2007) The rodent estrous cycle: characterization of vaginal cytology and its utility in toxicological studies. Birth Defects Res 80:84–97

    Article  CAS  Google Scholar 

  74. Marcondes FK, Bianchi FJ, Tanno AP (2002) Determination of the estrous cycle phases of rats: some helpful considerations. Braz J Biol 62:609–614

    Article  CAS  PubMed  Google Scholar 

  75. Pawluski J, Brummelte S, Barha CK, Croizer TM, Galea LAM (2009) Effects of steroid hormones on neurogenesis in the hippocampus of the adult female rodent during the estrous cycle, pregnancy, lactation and aging. Front Neuroendocrinol 30:343–357

    Article  CAS  PubMed  Google Scholar 

  76. Becker JB, Robinson TE, Lorenz KA (1982) Sex difference and estrous cycle variations in amphetamine-elicited rotational behaviour. Eur J Pharmacol 80:65–72

    Article  CAS  PubMed  Google Scholar 

  77. Woolley CS, McEwen BS (1992) Roles of estradiol and progesterone n regulation of hippocampal dendritic spine density during the estrous cycle in the rat. J Comp Neurol 101:293–306

    Google Scholar 

  78. Galea LAM, Ormerod BK, Sampath S, Kostaras X, Wilkie DM, Phelps MT (2000) Spatial working memory and hippocampal size across pregnancy in rats. Horm Behav 37:86–95

    Article  CAS  PubMed  Google Scholar 

  79. Rosenblatt SJ, Mayer AD, Giordano AL (1988) Hormonal basis during pregnancy for the onset of maternal behaviour in the rat. Psychoneuroendocrinology 13:29–46

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan Kolb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kolb, B., Saucier, D. (2015). The Effect of Age on Brain Plasticity in Animal Models of Developmental Disability. In: Yager, J. (eds) Animal Models of Neurodevelopmental Disorders. Neuromethods, vol 104. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2709-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2709-8_16

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2708-1

  • Online ISBN: 978-1-4939-2709-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics