Skip to main content

Modeling Intellectual Disability in Drosophila

  • Protocol
Animal Models of Neurodevelopmental Disorders

Part of the book series: Neuromethods ((NM,volume 104))

Abstract

Intellectual disability (ID) is a common neurodevelopmental disorder affecting 3 % of the population. At this time, no pharmacological treatment has been identified for the treatment of ID patients. An increasing number of genes are identified in patients with ID but a significant gap persists between gene discovery and treatment. Lack of treatment can be explained by our poor understanding of the molecular mechanisms linking cognition and genes. We present here a model of learning and memory in Drosophila that has now been used by several groups to gain genetic understanding in memory defects related to ID genes. We review the pertinent background about the assay and its relation to ID. We also review the assay in detail and provide some advice about troubleshooting tips. Finally, we discuss how flies and other animal models could be used synergistically to develop new treatment for ID patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shevell M, Ashwal S, Donley D et al (2003) Practice parameter: evaluation of the child with global developmental delay: report of the Quality Standards Subcommittee of the American Academy of Neurology and The Practice Committee of the Child Neurology Society. Neurology 60:367–380

    Article  CAS  PubMed  Google Scholar 

  2. Jacob FD, Ramaswamy V, Andersen J, Bolduc FV (2009) Atypical Rett syndrome with selective FOXG1 deletion detected by comparative genomic hybridization: case report and review of literature. Eur J Hum Genet 17:1577

    Article  PubMed Central  PubMed  Google Scholar 

  3. Flint J, Wilkie AO, Buckle VJ, Winter RM, Holland AJ, McDermid HE (1995) The detection of subtelomeric chromosomal rearrangements in idiopathic mental retardation. Nat Genet 9:132–140

    Article  CAS  PubMed  Google Scholar 

  4. Ravnan JB, Tepperberg JH, Papenhausen P et al (2006) Subtelomere FISH analysis of 11 688 cases: an evaluation of the frequency and pattern of subtelomere rearrangements in individuals with developmental disabilities. J Med Genet 43:478–489

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Cook EH Jr, Scherer SW (2008) Copy-number variations associated with neuropsychiatric conditions. Nature 455:919–923

    Article  CAS  PubMed  Google Scholar 

  6. Bolduc FV, Tully T (2009) Molecular biology of learning. In: Shevell M (ed) Clinical and scientific aspects of neurodevelopmental disabilities. MacKeith Press, London

    Google Scholar 

  7. Bolduc FV, Tully T (2009) Fruit flies and intellectual disability. Fly (Austin) 3

    Google Scholar 

  8. Paribello C, Tao L, Folino A et al (2010) Open-label add-on treatment trial of minocycline in fragile X syndrome. BMC Neurol 10:91

    Article  PubMed Central  PubMed  Google Scholar 

  9. Krueger DA, Care MM, Holland K et al (2010) Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. N Engl J Med 363:1801–1811

    Article  CAS  PubMed  Google Scholar 

  10. Ropers HH, Hamel BC (2005) X-linked mental retardation. Nat Rev Genet 6:46–57

    Article  CAS  PubMed  Google Scholar 

  11. Hagberg B, Hagberg G, Lewerth A, Lindberg U (1981) Mild mental retardation in Swedish school children. II. Etiologic and pathogenetic aspects. Acta Paediatr Scand 70:445–452

    Article  CAS  PubMed  Google Scholar 

  12. McLaren J, Bryson SE (1987) Review of recent epidemiological studies of mental retardation: prevalence, associated disorders, and etiology. Am J Ment Retard 92:243–254

    CAS  PubMed  Google Scholar 

  13. Yeargin-Allsopp M, Boyle C (2002) Overview: the epidemiology of neurodevelopmental disorders. Ment Retard Dev Disabil Res Rev 8:113–116

    Article  PubMed  Google Scholar 

  14. Roeleveld N, Zielhuis GA, Gabreels F (1997) The prevalence of mental retardation: a critical review of recent literature. Dev Med Child Neurol 39:125–132

    Article  CAS  PubMed  Google Scholar 

  15. Shea SE (2006) Mental retardation in children ages 6 to 16. Semin Pediatr Neurol 13:262–270

    Article  PubMed  Google Scholar 

  16. Honeycutt AA, Grosse S, Dunlap LJ, Chen H, Al Homsi G, Schendel D (2003) Economic cost of mental retardation, cerebral palsy, hearing loss, and vision impairment. Elsevier, London

    Book  Google Scholar 

  17. Aicardi J (1998) The etiology of developmental delay. Semin Pediatr Neurol 5:15–20

    Article  CAS  PubMed  Google Scholar 

  18. Katz ER, Ellis NR (1991) Memory for spatial location in retarded and nonretarded persons. J Ment Defic Res 35(Pt 3):209–220

    PubMed  Google Scholar 

  19. McCartney JR (1987) Mentally retarded and nonretarded subjects’ long-term recognition memory. Am J Ment Retard 92:312–317

    CAS  PubMed  Google Scholar 

  20. Winters JJ Jr, Semchuk MT (1986) Retrieval from long-term store as a function of mental age and intelligence. Am J Ment Defic 90:440–448

    PubMed  Google Scholar 

  21. Cornish KM, Munir F, Cross G (1999) Spatial cognition in males with Fragile-X syndrome: evidence for a neuropsychological phenotype. Cortex 35:263–271

    Article  CAS  PubMed  Google Scholar 

  22. Kogan CS, Boutet I, Cornish K et al (2009) A comparative neuropsychological test battery differentiates cognitive signatures of Fragile X and Down syndrome. J Intellect Disabil Res 53:125–142

    Article  CAS  PubMed  Google Scholar 

  23. The Dutch-Belgian Fragile X Consortium (1994) Fmr1 knockout mice: a model to study fragile X mental retardation. Cell 78:23–33

    Google Scholar 

  24. Maes B, Fryns JP, Van Walleghem M, Van den Berghe H (1994) Cognitive functioning and information processing of adult mentally retarded men with fragile-X syndrome. Am J Med Genet 50:190–200

    Article  CAS  PubMed  Google Scholar 

  25. Kooy RF, D’Hooge R, Reyniers E et al (1996) Transgenic mouse model for the fragile X syndrome. Am J Med Genet 64:241–245

    Article  CAS  PubMed  Google Scholar 

  26. Bolduc FV, Bell K, Cox H, Broadie KS, Tully T (2008) Excess protein synthesis in Drosophila fragile X mutants impairs long-term memory. Nat Neurosci 11:1143–1145

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. McBride SM, Choi CH, Wang Y et al (2005) Pharmacological rescue of synaptic plasticity, courtship behavior, and mushroom body defects in a Drosophila model of fragile X syndrome. Neuron 45:753–764

    Article  CAS  PubMed  Google Scholar 

  28. Marcell MM, Harvey CF, Cothran LP (1988) An attempt to improve auditory short-term memory in Down’s syndrome individuals through reducing distractions. Res Dev Disabil 9:405–417

    Article  CAS  PubMed  Google Scholar 

  29. Marcell MM, Weeks SL (1988) Short-term memory difficulties and Down’s syndrome. J Ment Defic Res 32(Pt 2):153–162

    PubMed  Google Scholar 

  30. Vicari S, Bellucci S, Carlesimo GA (2006) Evidence from two genetic syndromes for the independence of spatial and visual working memory. Dev Med Child Neurol 48:126–131

    Article  PubMed  Google Scholar 

  31. Vicari S, Carlesimo GA (2006) Short-term memory deficits are not uniform in Down and Williams syndromes. Neuropsychol Rev 16:87–94

    Article  PubMed  Google Scholar 

  32. Ebbinghaus H (1885) Memory: a contribution to experimental psychology. Teachers College, Columbia University, New York

    Google Scholar 

  33. Tully T, Preat T, Boynton SC, Del Vecchio M (1994) Genetic dissection of consolidated memory in Drosophila. Cell 79:35–47

    Article  CAS  PubMed  Google Scholar 

  34. Ribot T (1882) L’Heredite psychologique. Baillière, Paris

    Google Scholar 

  35. Mueller G, Pilzecker A (1900) Experimentelle Beitrage zur Lehre vom Gedachtniss. Z Psychol Ergänzungsband 1:1

    Google Scholar 

  36. Pavlov I (1927) Conditioned reflexes. International Publishers, New York, NY

    Google Scholar 

  37. Thorndike E (1901) The influence of improvement in one mental function upon the efficiency of other functions. Psychol Rev 8:247–261

    Article  Google Scholar 

  38. Watson JB (1920) Conditioned emotional reactions. J Exp Psychol 3:1–14

    Article  Google Scholar 

  39. Hebb DO (1949) The organization of behavior; a neuropsychological theory. Wiley, New York

    Google Scholar 

  40. Scoville WB, Milner B (1957) Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry 20:11–21

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Milner B, Penfield W (1955) The effect of hippocampal lesions on recent memory. Trans Am Neurol Assoc 42–48

    Google Scholar 

  42. Milner B (1954) Intellectual function of the temporal lobes. Psychol Bull 51:42–62

    Article  CAS  PubMed  Google Scholar 

  43. Benzer S (1967) Behavioral mutants of Drosophila isolated by countercurrent distribution. Proc Natl Acad Sci U S A 58:1112–1119

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Benzer S (1973) Genetic dissection of behavior. Sci Am 229:24–37

    Article  CAS  PubMed  Google Scholar 

  45. Dudai Y, Jan YN, Byers D, Quinn WG, Benzer S (1976) Dunce, a mutant of Drosophila deficient in learning. Proc Natl Acad Sci U S A 73:1684–1688

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Livingstone MS, Sziber PP, Quinn WG (1984) Loss of calcium/calmodulin responsiveness in adenylate cyclase of rutabaga, a Drosophila learning mutant. Cell 37:205–215

    Article  CAS  PubMed  Google Scholar 

  47. Davis RL, Davidson N (1984) Isolation of the Drosophila melanogaster dunce chromosomal region and recombinational mapping of dunce sequences with restriction site polymorphisms as genetic markers. Mol Cell Biol 4:358–367

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Levin LR, Han PL, Hwang PM, Feinstein PG, Davis RL, Reed RR (1992) The Drosophila learning and memory gene rutabaga encodes a Ca2+/Calmodulin-responsive adenylyl cyclase. Cell 68:479–489

    Article  CAS  PubMed  Google Scholar 

  49. Brunelli M, Castellucci V, Kandel ER (1976) Synaptic facilitation and behavioral sensitization in Aplysia: possible role of serotonin and cyclic AMP. Science 194:1178–1181

    Article  CAS  PubMed  Google Scholar 

  50. Tully T, Quinn WG (1985) Classical conditioning and retention in normal and mutant Drosophila melanogaster. J Comp Physiol A 157:263–277

    Article  CAS  PubMed  Google Scholar 

  51. Dubnau J, Chiang AS, Tully T (2003) Neural substrates of memory: from synapse to system. J Neurobiol 54:238–253

    Article  CAS  PubMed  Google Scholar 

  52. Pitman JL, Dasgupta S, Krashes MJ, Leung B, Perrat PN, Waddell S (2009) There are many ways to train a fly. Fly (Austin) 3

    Google Scholar 

  53. Margulies C, Tully T, Dubnau J (2005) Deconstructing memory in Drosophila. Curr Biol 15:R700–R713

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Yin JC, Wallach JS, Del Vecchio M et al (1994) Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophila. Cell 79:49–58

    Article  CAS  PubMed  Google Scholar 

  55. Bourtchouladze R, Lidge R, Catapano R et al (2003) A mouse model of Rubinstein-Taybi syndrome: defective long-term memory is ameliorated by inhibitors of phosphodiesterase 4. Proc Natl Acad Sci U S A 100:10518–10522

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Tully T, Bourtchouladze R, Scott R, Tallman J (2003) Targeting the CREB pathway for memory enhancers. Nat Rev Drug Discov 2:267–277

    Article  CAS  PubMed  Google Scholar 

  57. Dubnau J, Chiang AS, Grady L et al (2003) The staufen/pumilio pathway is involved in Drosophila long-term memory. Curr Biol 13:286–296

    Article  CAS  PubMed  Google Scholar 

  58. Wu Y, Bolduc FV, Bell K et al (2008) A Drosophila model for Angelman syndrome. Proc Natl Acad Sci U S A 105:12399–12404

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Didelot G, Molinari F, Tchenio P et al (2006) Tequila, a neurotrypsin ortholog, regulates long-term memory formation in Drosophila. Science 313:851–853

    Article  CAS  PubMed  Google Scholar 

  60. Inlow JK, Restifo LL (2004) Molecular and comparative genetics of mental retardation. Genetics 166:835–881

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415

    CAS  PubMed  Google Scholar 

  62. McGuire SE, Le PT, Osborn AJ, Matsumoto K, Davis RL (2003) Spatiotemporal rescue of memory dysfunction in Drosophila. Science 302:1765–1768

    Article  CAS  PubMed  Google Scholar 

  63. Bonini NM (2000) Drosophila as a genetic tool to define vertebrate pathway players. Methods Mol Biol 136:7–14

    CAS  PubMed  Google Scholar 

  64. Feany MB, Bender WW (2000) A Drosophila model of Parkinson’s disease. Nature 404:394–398

    Article  CAS  PubMed  Google Scholar 

  65. Li Z, Karlovich CA, Fish MP, Scott MP, Myers RM (1999) A putative Drosophila homolog of the Huntington’s disease gene. Hum Mol Genet 8:1807–1815

    Article  CAS  PubMed  Google Scholar 

  66. Cukier HN, Perez AM, Collins AL, Zhou Z, Zoghbi HY, Botas J (2008) Genetic modifiers of MeCP2 function in Drosophila. PLoS Genet 4, e1000179

    Article  PubMed Central  PubMed  Google Scholar 

  67. Xia S, Miyashita T, Fu TF et al (2005) NMDA receptors mediate olfactory learning and memory in Drosophila. Curr Biol 15:603–615

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. de Belle JS, Heisenberg M (1996) Expression of Drosophila mushroom body mutations in alternative genetic backgrounds: a case study of the mushroom body miniature gene (mbm). Proc Natl Acad Sci U S A 93:9875–9880

    Article  PubMed Central  PubMed  Google Scholar 

  69. Pietropaolo S, Guilleminot A, Martin B, D’Amato FR, Crusio WE (2011) Genetic-background modulation of core and variable autistic-like symptoms in Fmr1 knock-out mice. PLoS One 6, e17073

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Hotta Y, Benzer S (1973) Mapping of behavior in Drosophila mosaics. Symp Soc Dev Biol 31:129–167

    CAS  PubMed  Google Scholar 

  71. Quinn WG, Harris WA, Benzer S (1974) Conditioned behavior in Drosophila melanogaster. Proc Natl Acad Sci U S A 71:708–712

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Choi CH, McBride SM, Schoenfeld BP et al (2010) Age-dependent cognitive impairment in a Drosophila fragile X model and its pharmacological rescue. Biogerontology 11:347–362

    Article  PubMed Central  PubMed  Google Scholar 

  73. Guo HF, Tong J, Hannan F, Luo L, Zhong Y (2000) A neurofibromatosis-1-regulated pathway is required for learning in Drosophila. Nature 403:895–898

    Article  CAS  PubMed  Google Scholar 

  74. Wolfgang WJ, Hoskote A, Roberts IJ, Jackson S, Forte M (2001) Genetic analysis of the Drosophila Gs(alpha) gene. Genetics 158:1189–1201

    Google Scholar 

  75. Connolly JB, Tully T (1998) Integrins: a role for adhesion molecules in olfactory memory. Curr Biol 8:R386–R389

    Article  CAS  PubMed  Google Scholar 

  76. Grotewiel MS, Beck CD, Wu KH, Zhu XR, Davis RL (1998) Integrin-mediated short-term memory in Drosophila. Nature 391:455–460

    Article  CAS  PubMed  Google Scholar 

  77. Godenschwege TA, Kristiansen LV, Uthaman SB, Hortsch M, Murphey RK (2006) A conserved role for Drosophila Neuroglian and human L1-CAM in central-synapse formation. Curr Biol 16:12–23

    Article  CAS  PubMed  Google Scholar 

  78. Guimera J, Casas C, Pucharcos C et al (1996) A human homologue of Drosophila minibrain (MNB) is expressed in the neuronal regions affected in Down syndrome and maps to the critical region. Hum Mol Genet 5:1305–1310

    Article  CAS  PubMed  Google Scholar 

  79. Tejedor F, Zhu XR, Kaltenbach E et al (1995) Minibrain: a new protein kinase family involved in postembryonic neurogenesis in Drosophila. Neuron 14:287–301

    Article  CAS  PubMed  Google Scholar 

  80. Garcia CC, Blair HJ, Seager M et al (2004) Identification of a mutation in synapsin I, a synaptic vesicle protein, in a family with epilepsy. J Med Genet 41:183–186

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Godenschwege TA, Reisch D, Diegelmann S et al (2004) Flies lacking all synapsins are unexpectedly healthy but are impaired in complex behaviour. Eur J Neurosci 20:611–622

    Article  PubMed  Google Scholar 

  82. Broadie K, Rushton E, Skoulakis EM, Davis RL (1997) Leonardo, a Drosophila 14-3-3 protein involved in learning, regulates presynaptic function. Neuron 19:391–402

    Article  CAS  PubMed  Google Scholar 

  83. Skoulakis EM, Davis RL (1996) Olfactory learning deficits in mutants for leonardo, a Drosophila gene encoding a 14-3-3 protein. Neuron 17:931–944

    Article  CAS  PubMed  Google Scholar 

  84. Chang KT, Shi YJ, Min KT (2003) The Drosophila homolog of Down’s syndrome critical region 1 gene regulates learning: implications for mental retardation. Proc Natl Acad Sci U S A 100:15794–15799

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Melicharek DJ, Ramirez LC, Singh S, Thompson R, Marenda DR (2010) Kismet/CHD7 regulates axon morphology, memory and locomotion in a Drosophila model of CHARGE syndrome. Hum Mol Genet 19:4253

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Putz G, Bertolucci F, Raabe T, Zars T, Heisenberg M (2004) The S6KII (rsk) gene of Drosophila melanogaster differentially affects an operant and a classical learning task. J Neurosci 24:9745–9751

    Article  CAS  PubMed  Google Scholar 

  87. Comas D, Petit F, Preat T (2004) Drosophila long-term memory formation involves regulation of cathepsin activity. Nature 430:460–463

    Article  CAS  PubMed  Google Scholar 

  88. Ge X, Hannan F, Xie Z et al (2004) Notch signaling in Drosophila long-term memory formation. Proc Natl Acad Sci U S A 101:10172–10176

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Tim Tully for his mentorship. We would also like to thank the Canadian Child Health Clinician Scientist Program (CCHCSP) for the Career Development Award, the Woman and Children Health Research Institute (WCHRI) and Canadian Institute of Health Research (CIHR) and Dart Neuroscience for their financial support to my laboratory. Finally, we would like to thank the members of the Tully and Bolduc lab, Dr. Andrew Simmonds and Sarah Hughes, Dr. Steven De Belle, Dr. Terry Klassen, Dr. Thiery Lacaze, Dr. Peter Nguyen, Dr. Jerry Yager and Dr. Susan Gilmour and Dr. Lori West as well as the members of the University of Alberta Fly Group and of the Neuroscience and Mental Health Institute at the University of Alberta for stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francois V. Bolduc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Androschuk, A., Bolduc, F.V. (2015). Modeling Intellectual Disability in Drosophila. In: Yager, J. (eds) Animal Models of Neurodevelopmental Disorders. Neuromethods, vol 104. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2709-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2709-8_14

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2708-1

  • Online ISBN: 978-1-4939-2709-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics