Skip to main content

Unilateral Common Carotid Artery Ligation as a Model of Perinatal Asphyxia: The Original Rice–Vannucci Model

  • Protocol
Animal Models of Neurodevelopmental Disorders

Part of the book series: Neuromethods ((NM,volume 104))

Abstract

Hypoxic-ischemic encephalopathy (HIE) is a detrimental event leading to unfavorable neurological outcomes in the newborn, the clinical phenotype of which is typically referred to as cerebral palsy. The high incidence of HIE results in a need for animal models that can replicate this human experience in order to determine the pathophysiology of injury and develop therapeutic interventions. One of the first models to be developed was, the now commonly referred to as the Rice–Vannucci model, after the student and principle investigator who first developed and described the model. Now, perhaps the best characterized and certainly the most commonly utilized model to reflect perinatal hypoxic-ischemic injury, the “Rice–Vannucci” model is the cornerstone to investigating neonatal brain injury and hypoxic-ischemic encephalopathy. This chapter describes the methodology for utilizing this model, attempt to recognize aspects of the model which have since evolved since its inception, and identify areas of caution when undertaking its use for hypoxic-ischemic encephalopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Badawi N, Kurinczuk JJ, Keogh JM, Alessandri LM, O’Sullivan F, Burton PR et al (1998) Intrapartum risk factors for newborn encephalopathy: the Western Australian case-control study. BMJ 317(7172):1554–1558

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Badawi N, Kurinczuk JJ, Keogh JM, Alessandri LM, O’Sullivan F, Burton PR et al (1998) Antepartum risk factors for newborn encephalopathy: the Western Australian case-control study. BMJ 317(7172):1549–1553

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Glass HC, Ferriero DM (2007) Treatment of hypoxic-ischemic encephalopathy in newborns. Curr Treat Options Neurol 9(6):414–423

    Article  PubMed  Google Scholar 

  4. Vannucci RC, Vannucci SJ (2005) Perinatal hypoxic-ischemic brain damage: evolution of an animal model. Dev Neurosci 27(2–4):81–86

    Article  CAS  PubMed  Google Scholar 

  5. Towfighi J, Zec N, Yager J, Housman C, Vannucci RC (1995) Temporal evolution of neuropathologic changes in an immature rat model of cerebral hypoxia: a light microscopic study. Acta Neuropathol 90(4):375–386

    Article  CAS  PubMed  Google Scholar 

  6. Thoresen M, Satas S, Loberg EM, Whitelaw A, Acolet D, Lindgren C et al (2001) Twenty-four hours of mild hypothermia in unsedated newborn pigs starting after a severe global hypoxic-ischemic insult is not neuroprotective. Pediatr Res 50(3):405–411

    Article  CAS  PubMed  Google Scholar 

  7. Thoresen M (1999) Cooling the asphyxiated brain - ready for clinical trials? Eur J Pediatr 158(Suppl 1):S5–S8

    Article  PubMed  Google Scholar 

  8. Thoresen M, Satas S, Puka-Sundvall M, Whitelaw A, Hallstrom A, Loberg EM et al (1997) Post-hypoxic hypothermia reduces cerebrocortical release of NO and excitotoxins. Neuroreport 8(15):3359–3362

    Article  CAS  PubMed  Google Scholar 

  9. Srinivasakumar P, Zempel J, Wallendorf M, Lawrence R, Inder T, Mathur A (2013) Therapeutic hypothermia in neonatal hypoxic ischemic encephalopathy: electrographic seizures and magnetic resonance imaging evidence of injury. J Pediatr 163(2):465–470

    Article  PubMed  Google Scholar 

  10. Roka A, Azzopardi D (2010) Therapeutic hypothermia for neonatal hypoxic ischaemic encephalopathy. Early Hum Dev 86(6):361–367

    Article  PubMed  Google Scholar 

  11. Bona E, Hagberg H, Loberg EM, Bagenholm R, Thoresen M (1998) Protective effects of moderate hypothermia after neonatal hypoxia-ischemia: short- and long-term outcome. Pediatr Res 43(6):738–745

    Article  CAS  PubMed  Google Scholar 

  12. Jacobs SE, Berg M, Hunt R, Tarnow-Mordi WO, Inder TE, Davis PG (2013) Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst Rev 1:CD003311

    Google Scholar 

  13. Shankaran S, Laptook A, Wright LL, Ehrenkranz RA, Donovan EF, Fanaroff AA et al (2002) Whole-body hypothermia for neonatal encephalopathy: animal observations as a basis for a randomized, controlled pilot study in term infants. Pediatrics 110(2 Pt 1):377–385

    Article  PubMed  Google Scholar 

  14. Shankaran S, Laptook AR, Ehrenkranz RA, Tyson JE, McDonald SA, Donovan EF et al (2005) Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N Engl J Med 353(15):1574–1584

    Article  CAS  PubMed  Google Scholar 

  15. Northington FJ (2006) Brief update on animal models of hypoxic-ischemic encephalopathy and neonatal stroke. ILAR J 47(1):32–38

    Article  CAS  PubMed  Google Scholar 

  16. Semple BD, Blomgren K, Gimlin K, Ferriero DM, Noble-Haeusslein LJ (2013) Brain development in rodents and humans: identifying benchmarks of maturation and vulnerability to injury across species. Prog Neurobiol 106–107:1–16

    Article  PubMed  Google Scholar 

  17. Hagberg H, Ichord R, Palmer C, Yager JY, Vannucci SJ (2002) Animal models of developmental brain injury: relevance to human disease. A summary of the panel discussion from the Third Hershey Conference on Developmental Cerebral Blood Flow and Metabolism. Dev Neurosci 24(5):364–366

    Article  CAS  PubMed  Google Scholar 

  18. Hagberg H, Bona E, Gilland E, Puka-Sundvall M (1997) Hypoxia-ischaemia model in the 7-day-old rat: possibilities and shortcomings. Acta Paediatr Suppl 422:85–88

    Article  CAS  PubMed  Google Scholar 

  19. Levine S (1960) Anoxic-ischemic encephalopathy in rats. Am J Pathol 36:1–17

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Yager JY, Wright S, Armstrong EA, Jahraus CM, Saucier DM (2006) The influence of aging on recovery following ischemic brain damage. Behav Brain Res 173(2):171–180

    Article  PubMed  Google Scholar 

  21. Yager JY, Shuaib A, Thornhill J (1996) The effect of age on susceptibility to brain damage in a model of global hemispheric hypoxia-ischemia. Brain Res Dev Brain Res 93(1–2):143–154

    Article  CAS  PubMed  Google Scholar 

  22. Rice JE 3rd, Vannucci RC, Brierley JB (1981) The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol 9(2):131–141

    Article  PubMed  Google Scholar 

  23. Hill CA, Fitch RH (2012) Sex differences in mechanisms and outcome of neonatal hypoxia-ischemia in rodent models: implications for sex-specific neuroprotection in clinical neonatal practice. Neurol Res Int 2012:867531, Pubmed Central PMCID: 3306914

    Article  PubMed Central  PubMed  Google Scholar 

  24. Vannucci RC, Christensen MA, Yager JY (1993) Nature, time-course, and extent of cerebral edema in perinatal hypoxic-ischemic brain damage. Pediatr Neurol 9(1):29–34

    Article  CAS  PubMed  Google Scholar 

  25. Vannucci RC, Lyons DT, Vasta F (1988) Regional cerebral blood flow during hypoxia-ischemia in immature rats. Stroke 19(2):245–250

    Article  CAS  PubMed  Google Scholar 

  26. Vannucci RC, Brucklacher RM, Vannucci SJ (2005) Glycolysis and perinatal hypoxic-ischemic brain damage. Dev Neurosci 27(2–4):185–190

    Article  CAS  PubMed  Google Scholar 

  27. Vannucci RC, Brucklacher RM, Vannucci SJ (2001) Intracellular calcium accumulation during the evolution of hypoxic-ischemic brain damage in the immature rat. Brain Res Dev Brain Res 126(1):117–120

    Article  CAS  PubMed  Google Scholar 

  28. Vannucci RC, Brucklacher RM, Vannucci SJ (1999) CSF glutamate during hypoxia-ischemia in the immature rat. Brain Res Dev Brain Res 118(1–2):147–151

    Article  CAS  PubMed  Google Scholar 

  29. Vannucci RC, Brucklacher RM (1994) Cerebral mitochondrial redox states during metabolic stress in the immature rat. Brain Res 653(1–2):141–147

    Article  CAS  PubMed  Google Scholar 

  30. Vannucci RC (1993) Mechanisms of perinatal hypoxic-ischemic brain damage. Semin Perinatol 17(5):330–337

    CAS  PubMed  Google Scholar 

  31. Vannucci RC (1993) Experimental models of perinatal hypoxic-ischemic brain damage. APMIS Suppl 40:89–95

    CAS  PubMed  Google Scholar 

  32. Vannucci RC (1990) Experimental biology of cerebral hypoxia-ischemia: relation to perinatal brain damage. Pediatr Res 27(4 Pt 1):317–326

    Article  CAS  PubMed  Google Scholar 

  33. Towfighi J, Yager JY, Housman C, Vannucci RC (1991) Neuropathology of remote hypoxic-ischemic damage in the immature rat. Acta Neuropathol 81(5):578–587

    Article  CAS  PubMed  Google Scholar 

  34. Yager J, Towfighi J, Vannucci RC (1993) Influence of mild hypothermia on hypoxic-ischemic brain damage in the immature rat. Pediatr Res 34(4):525–529

    Article  CAS  PubMed  Google Scholar 

  35. Yager JY, Asselin J (1996) Effect of mild hypothermia on cerebral energy metabolism during the evolution of hypoxic-ischemic brain damage in the immature rat. Stroke 27(5):919–925, discussion 26

    Article  CAS  PubMed  Google Scholar 

  36. Comi AM, Johnston MV, Wilson MA (2005) Immature mouse unilateral carotid ligation model of stroke. J Child Neurol 20(12):980–983

    Article  PubMed  Google Scholar 

  37. Sheldon RA, Sedik C, Ferriero DM (1998) Strain-related brain injury in neonatal mice subjected to hypoxia-ischemia. Brain Res 810(1–2):114–122

    Article  CAS  PubMed  Google Scholar 

  38. Sheldon RA, Chuai J, Ferriero DM (1996) A rat model for hypoxic-ischemic brain damage in very premature infants. Biol Neonate 69(5):327–341

    Article  CAS  PubMed  Google Scholar 

  39. Back SA, Luo NL, Borenstein NS, Levine JM, Volpe JJ, Kinney HC (2001) Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury. J Neurosci 21(4):1302–1312

    CAS  PubMed  Google Scholar 

  40. Dobbing J, Sands J (1979) Comparative aspects of the brain growth spurt. Early Hum Dev 3(1):79–83

    Article  CAS  PubMed  Google Scholar 

  41. Yager JY (2004) Animal models of hypoxic-ischemic brain damage in the newborn. Semin Pediatr Neurol 11(1):31–46

    Article  PubMed  Google Scholar 

  42. Towfighi J, Mauger D, Vannucci RC, Vannucci SJ (1997) Influence of age on the cerebral lesions in an immature rat model of cerebral hypoxia-ischemia: a light microscopic study. Brain Res Dev Brain Res 100(2):149–160

    Article  CAS  PubMed  Google Scholar 

  43. Towfighi J, Mauger D (1998) Temporal evolution of neuronal changes in cerebral hypoxia-ischemia in developing rats: a quantitative light microscopic study. Brain Res Dev Brain Res 109(2):169–177

    Article  CAS  PubMed  Google Scholar 

  44. Hurn PD, Vannucci SJ, Hagberg H (2005) Adult or perinatal brain injury: does sex matter? Stroke 36(2):193–195

    Article  PubMed  Google Scholar 

  45. Johnston MV, Hagberg H (2007) Sex and the pathogenesis of cerebral palsy. Dev Med Child Neurol 49(1):74–78

    Article  PubMed  Google Scholar 

  46. Yager JY, Wright S, Armstrong EA, Jahraus CM, Saucier DM (2005) A new model for determining the influence of age and sex on functional recovery following hypoxic-ischemic brain damage. Dev Neurosci 27(2–4):112–120

    Article  CAS  PubMed  Google Scholar 

  47. Yager JY, Asselin J (1999) The effect of pre hypoxic-ischemic (HI) hypo and hyperthermia on brain damage in the immature rat. Brain Res Dev Brain Res 117(2):139–143

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerome Y. Yager M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Nguyen, A., Armstrong, E.A., Yager, J.Y. (2015). Unilateral Common Carotid Artery Ligation as a Model of Perinatal Asphyxia: The Original Rice–Vannucci Model. In: Yager, J. (eds) Animal Models of Neurodevelopmental Disorders. Neuromethods, vol 104. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2709-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2709-8_1

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2708-1

  • Online ISBN: 978-1-4939-2709-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics