Skip to main content

Methods for RNA Profiling of Gravi-Responding Plant Tissues

  • Protocol
Plant Gravitropism

Abstract

Plant transcriptional responses to gravity stimulation by reorientation are among the fastest measured in any tissue or species. Upon reorientation, changes in abundance of specific mRNAs can be measured within seconds or minutes, for plastid or nuclear encoded genes, respectively. Identifying fast gravity-induced transcripts has been made possible by the development of high-throughput technology for qualitative and quantitative RNA analysis. RNA profiling has undergone further rapid development due to its enormous potential in basic sciences and medical applications. We describe here the current and most widely used methods to profile the changes in an entire transcriptome by high-throughput sequencing of RNA fractions (RNAseq) and single gene transcript analysis using real-time quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kimbrough JM, Salinas-Mondragon R, Boss W, Brown CS, Sederoff HW (2004) The fast and transient transcriptional network of gravity and mechanical stimulation in the Arabidopsis root apex. Plant Physiol 136(1):2790–2805

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Salinas-Mondragón R, Brogan A, Ward N, Perera I, Boss W, Brown CS, Sederoff HW (2007) Gravity and light: integrating transcriptional regulation in roots. Gravit Space Res 18(2):121

    Google Scholar 

  3. Chen C (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33(20):179

    Article  Google Scholar 

  4. Wang Z, Gerstein M, Snyder M (2009) RNA-seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Mutz KO, Heilkenbrinker A, Lonne M, Walter JG, Stahl F (2013) Transcriptome analysis using next-generation sequencing. Curr Opin Biotechnol 24(1):22–30, Feb

    Article  CAS  PubMed  Google Scholar 

  6. Sreenivasulu N, Sunkar R, Wobus U, Strickert M (2010) Array platforms and bioinformatics tools for the analysis of plant transcriptome in response to abiotic stress. In: Sunkar R (ed) Methods in molecular biology, vol 639. Springer, Totowa, NJ, pp 71–93

    Google Scholar 

  7. Lander ES, Waterman M (1988) Genomic mapping by fingerprinting random clones: a mathematical analysis. Genomics 2(3):231–239

    Article  CAS  PubMed  Google Scholar 

  8. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3(6):1101–1108

    Article  CAS  PubMed  Google Scholar 

  9. Babraham bioinformatics - FastQC A quality control tool for high throughput sequence data. Available from http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

  10. FASTX-toolkit. Available from http://hannonlab.cshl.edu/fastx_toolkit/

  11. Haas BJ, Papanicolaou A, Yassour M et al (2013) De novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis. Nat Protoc 8(8):1494–1512

    Article  CAS  PubMed  Google Scholar 

  12. Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21(18):3674–3676

    Article  CAS  PubMed  Google Scholar 

  13. Li H, Durbin R (2009) Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25(14):1754–1760

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Milne I, Stephen G, Bayer M, Cock PJ, Pritchard L, Cardle L, Shaw PD, Marshall D (2013) Using tablet for visual exploration of second-generation sequencing data. Brief Bioinform 14(2):193–202

    Article  CAS  PubMed  Google Scholar 

  15. eXpress. Available from http://bio.math.berkeley.edu/eXpress/

  16. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M (2014) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 42:D199–D205

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Meyers BC, Axtell MJ, Bartel B et al (2008) Criteria for annotation of plant MicroRNAs. Plant Cell 20(12):3186–3190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Primer designing tool. Available from http://www.ncbi.nlm.nih.gov/tools/primer-blast/

  20. IDT - PrimerQuest input. Available from http://www.idtdna.com/Primerquest/Home/Index

  21. Primer3. Available from http://biotools.umassmed.edu/bioapps/primer3_www.cgi

  22. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):45

    Article  Google Scholar 

Download references

Acknowledgements

Funding for transcript profiling in our labs was provided by NASA, NSF, DOE, and USDA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heike Sederoff Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Dalal, J. et al. (2015). Methods for RNA Profiling of Gravi-Responding Plant Tissues. In: Blancaflor, E. (eds) Plant Gravitropism. Methods in Molecular Biology, vol 1309. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2697-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2697-8_9

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2696-1

  • Online ISBN: 978-1-4939-2697-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics