Skip to main content

Auxin Carrier and Signaling Dynamics During Gravitropic Root Growth

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1309))

Abstract

Plant growth relates to gravity, ensuring that roots grow downwards into the soil and shoots expand aerially. The phytohormone auxin mediates tropistic growth responses, such as root gravitropism. Gravity perception in the very tip of the roots triggers carrier-dependent, asymmetric redistribution of auxin, leading to differential auxin responses and growth regulation at the upper and lower root flanks. This cellular, asymmetry-breaking event will eventually lead to root bending towards the gravity vector. Here, we show how to investigate auxin signaling and auxin carrier dynamics during root gravitropic response, using a chambered cover glass in combination with a confocal live cell imaging approach. To exemplify this method, we used established lines expressing transcriptional and translational green fluorescent protein (GFP) fusions to the auxin responsive promoter element DR5rev and the prominent auxin carrier PIN-FORMED2 (PIN2), respectively. Transgenic seedlings were placed and grown in the chambered cover glasses, enabling defined gravitropic stimulations prior to imaging. This method is optimal for inverted microscopes and significantly reduces stressful manipulations during specimen preparation.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot 95(5):707–735. doi:10.1093/aob/mci083

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Normanly J (2010) Approaching cellular and molecular resolution of auxin biosynthesis and metabolism. Cold Spring Harb Perspect Biol 2(1):a001594. doi:10.1101/cshperspect.a001594

    Article  PubMed Central  PubMed  Google Scholar 

  3. Barbez E, Kleine-Vehn J (2013) Divide Et Impera–cellular auxin compartmentalization. Curr Opin Plant Biol 16(1):78–84. doi:10.1016/j.pbi.2012.10.005

    Article  CAS  PubMed  Google Scholar 

  4. Sauer M, Robert S, Kleine-Vehn J (2013) Auxin: simply complicated. J Exp Bot 64(9):2565–2577. doi:10.1093/jxb/ert139

    Article  CAS  PubMed  Google Scholar 

  5. Bennett MJ, Marchant A, Green HG, May ST, Ward SP, Millner PA, Walker AR, Schulz B, Feldmann KA (1996) Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science 273(5277):948–950

    Article  CAS  PubMed  Google Scholar 

  6. Luschnig C, Gaxiola RA, Grisafi P, Fink GR (1998) EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev 12(14):2175–2187

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Galweiler L, Guan C, Muller A, Wisman E, Mendgen K, Yephremov A, Palme K (1998) Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282(5397):2226–2230

    Article  CAS  PubMed  Google Scholar 

  8. Muller A, Guan C, Galweiler L, Tanzler P, Huijser P, Marchant A, Parry G, Bennett M, Wisman E, Palme K (1998) AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J 17(23):6903–6911. doi:10.1093/emboj/17.23.6903

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Petrasek J, Mravec J, Bouchard R, Blakeslee JJ, Abas M, Seifertova D, Wisniewska J, Tadele Z, Kubes M, Covanova M, Dhonukshe P, Skupa P, Benkova E, Perry L, Krecek P, Lee OR, Fink GR, Geisler M, Murphy AS, Luschnig C, Zazimalova E, Friml J (2006) PIN proteins perform a rate-limiting function in cellular auxin efflux. Science 312(5775):914–918. doi:10.1126/science.1123542

    Article  CAS  PubMed  Google Scholar 

  10. Yang Y, Hammes UZ, Taylor CG, Schachtman DP, Nielsen E (2006) High-affinity auxin transport by the AUX1 influx carrier protein. Curr Biol 16(11):1123–1127. doi:10.1016/j.cub.2006.04.029

    Article  CAS  PubMed  Google Scholar 

  11. Friml J, Benkova E, Blilou I, Wisniewska J, Hamann T, Ljung K, Woody S, Sandberg G, Scheres B, Jurgens G, Palme K (2002) AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell 108(5):661–673

    Article  CAS  PubMed  Google Scholar 

  12. Swarup R, Kramer EM, Perry P, Knox K, Leyser HM, Haseloff J, Beemster GT, Bhalerao R, Bennett MJ (2005) Root gravitropism requires lateral root cap and epidermal cells for transport and response to a mobile auxin signal. Nat Cell Biol 7(11):1057–1065. doi:10.1038/ncb1316

    Article  CAS  PubMed  Google Scholar 

  13. Abas L, Benjamins R, Malenica N, Paciorek T, Wisniewska J, Moulinier-Anzola JC, Sieberer T, Friml J, Luschnig C (2006) Intracellular trafficking and proteolysis of the Arabidopsis auxin-efflux facilitator PIN2 are involved in root gravitropism. Nat Cell Biol 8(3):249–256. doi:10.1038/ncb1369

    Article  CAS  PubMed  Google Scholar 

  14. Evans ML, Moore R, Hasenstein KH (1986) How Roots Respond to Gravity. Sci Am 255:112–119

    Article  CAS  PubMed  Google Scholar 

  15. Kiss JZ, Hertel R, Sack FD (1989) Amyloplasts are necessary for full gravitropic sensitivity in roots of Arabidopsis thaliana. Planta 177(2):198–206. doi:10.1007/BF00392808

    Article  Google Scholar 

  16. Harrison BR, Masson PH (2008) ARL2, ARG1 and PIN3 define a gravity signal transduction pathway in root statocytes. Plant J 53(2):380–392. doi:10.1111/j.1365-313X.2007.03351.x

    Article  CAS  PubMed  Google Scholar 

  17. Leitz G, Kang BH, Schoenwaelder ME, Staehelin LA (2009) Statolith sedimentation kinetics and force transduction to the cortical endoplasmic reticulum in gravity-sensing Arabidopsis columella cells. Plant Cell 21(3):843–860. doi:10.1105/tpc.108.065052

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Friml J, Wisniewska J, Benkova E, Mendgen K, Palme K (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415(6873):806–809. doi:10.1038/415806a

    Article  PubMed  Google Scholar 

  19. Kleine-Vehn J, Ding Z, Jones AR, Tasaka M, Morita MT, Friml J (2010) Gravity-induced PIN transcytosis for polarization of auxin fluxes in gravity-sensing root cells. Proc Natl Acad Sci U S A 107(51):22344–22349. doi:10.1073/pnas.1013145107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Kleine-Vehn J, Leitner J, Zwiewka M, Sauer M, Abas L, Luschnig C, Friml J (2008) Differential degradation of PIN2 auxin efflux carrier by retromer-dependent vacuolar targeting. Proc Natl Acad Sci U S A 105(46):17812–17817. doi:10.1073/pnas.0808073105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Rosquete MR, von Wangenheim D, Marhavy P, Barbez E, Stelzer EH, Benkova E, Maizel A, Kleine-Vehn J (2013) An auxin transport mechanism restricts positive orthogravitropism in lateral roots. Curr Biol 23(9):817–822. doi:10.1016/j.cub.2013.03.064

    Article  CAS  PubMed  Google Scholar 

  22. Baster P, Robert S, Kleine-Vehn J, Vanneste S, Kania U, Grunewald W, De Rybel B, Beeckman T, Friml J (2013) SCF(TIR1/AFB)-auxin signalling regulates PIN vacuolar trafficking and auxin fluxes during root gravitropism. EMBO J 32(2):260–274. doi:10.1038/emboj.2012.310

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9(11):1963–1971

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D, Jürgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115(5):591–602

    Article  PubMed  Google Scholar 

  25. Dhonukshe P, Aniento F, Hwang I, Robinson DG, Mravec J, Stierhof YD, Friml J (2007) Clathrin-mediated constitutive endocytosis of PIN auxin efflux carriers in Arabidopsis. Curr Biol 17(6):520–527. doi:10.1016/j.cub.2007.01.052

    Article  CAS  PubMed  Google Scholar 

  26. Kitakura S, Vanneste S, Robert S, Lofke C, Teichmann T, Tanaka H, Friml J (2011) Clathrin mediates endocytosis and polar distribution of PIN auxin transporters in Arabidopsis. Plant Cell 23(5):1920–1931. doi:10.1105/tpc.111.083030

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Robert S, Kleine-Vehn J, Barbez E, Sauer M, Paciorek T, Baster P, Vanneste S, Zhang J, Simon S, Covanova M, Hayashi K, Dhonukshe P, Yang Z, Bednarek SY, Jones AM, Luschnig C, Aniento F, Zazimalova E, Friml J (2010) ABP1 mediates auxin inhibition of clathrin-dependent endocytosis in Arabidopsis. Cell 143(1):111–121. doi:10.1016/j.cell.2010.09.027

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Laxmi A, Pan J, Morsy M, Chen R (2008) Light plays an essential role in intracellular distribution of auxin efflux carrier PIN2 in Arabidopsis thaliana. PLoS One 3(1):e1510. doi:10.1371/journal.pone.0001510

    Article  PubMed Central  PubMed  Google Scholar 

  29. Leitner J, Petrasek J, Tomanov K, Retzer K, Parezova M, Korbei B, Bachmair A, Zazimalova E, Luschnig C (2012) Lysine63-linked ubiquitylation of PIN2 auxin carrier protein governs hormonally controlled adaptation of Arabidopsis root growth. Proc Natl Acad Sci U S A 109(21):8322–8327. doi:10.1073/pnas.1200824109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Xu J, Scheres B (2005) Dissection of Arabidopsis ADP-RIBOSYLATION FACTOR 1 function in epidermal cell polarity. Plant Cell 17(2):525–536. doi:10.1105/tpc.104.028449

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Ottenschlager I, Wolff P, Wolverton C, Bhalerao RP, Sandberg G, Ishikawa H, Evans M, Palme K (2003) Gravity-regulated differential auxin transport from columella to lateral root cap cells. Proc Natl Acad Sci U S A 100(5):2987–2991. doi:10.1073/pnas.0437936100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to B. Scheres and J. Friml for providing the published fluorescent marker lines; the BOKU-VIBT Imaging Center for access and C. Löfke for expertise; D. Whittaker for help in preparing the manuscript. This work was supported by the Vienna Science and Technology Fund (WWTF) (to J.K.-V.), Austrian Science Fund (FWF) (Projects: P26568-B16 and P26591-B16 to J.K.-V.), and European Molecular Biology Organization (EMBO) (ALTF 795-2012, personal postdoctoral research grant to E.F.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Kleine-Vehn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Feraru, M.I., Kleine-Vehn, J., Feraru, E. (2015). Auxin Carrier and Signaling Dynamics During Gravitropic Root Growth. In: Blancaflor, E. (eds) Plant Gravitropism. Methods in Molecular Biology, vol 1309. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2697-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2697-8_7

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2696-1

  • Online ISBN: 978-1-4939-2697-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics