Skip to main content

Imaging of Dynamic Ion Signaling During Root Gravitropism

  • Protocol
Plant Gravitropism

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1309))

Abstract

Gravitropic signaling is a complex process that requires the coordinated action of multiple cell types and tissues. Ca2+ and pH signaling are key components of gravitropic signaling cascades and can serve as useful markers to dissect the molecular machinery mediating plant gravitropism. To monitor dynamic ion signaling, imaging approaches combining fluorescent ion sensors and confocal fluorescence microscopy are employed, which allow the visualization of pH and Ca2+ changes at the level of entire tissues, while also providing high spatiotemporal resolution. Here, I describe procedures to prepare Arabidopsis seedlings for live cell imaging and to convert a microscope for vertical stage fluorescence microscopy. With this imaging system, ion signaling can be monitored during all phases of the root gravitropic response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fasano JM, Swanson SJ, Blancaflor EB, Dowd PE, Kao TH, Gilroy S (2001) Changes in root cap pH are required for the gravity response of the Arabidopsis root. Plant Cell 13(4):907–921

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Boonsirichai K, Sedbrook JC, Chen RJ, Gilroy S, Masson PH (2003) ALTERED RESPONSE TO GRAVITY is a peripheral membrane protein that modulates gravity-induced cytoplasmic alkalinization and lateral auxin transport in plant statocytes. Plant Cell 15(11):2612–2625

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Friml J, Wisniewska J, Benkova E, Mendgen K, Palme K (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415(6873):806–809

    Article  PubMed  Google Scholar 

  4. Harrison BR, Masson PH (2008) ARL2, ARG1 and PIN3 define a gravity signal transduction pathway in root statocytes. Plant J 53(2):380–392

    Article  CAS  PubMed  Google Scholar 

  5. Kleine-Vehn J, Ding ZJ, Jones AR, Tasaka M, Morita MT, Friml J (2010) Gravity-induced PIN transcytosis for polarization of auxin fluxes in gravity-sensing root cells. Proc Natl Acad Sci U S A 107(51):22344–22349

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Baldwin KL, Strohm AK, Masson PH (2013) Gravity sensing and signal transduction in vascular plant primary roots. Am J Bot 100(1):126–142

    Article  CAS  PubMed  Google Scholar 

  7. Monshausen GB, Sievers A (2002) Basipetal propagation of gravity-induced surface pH changes along primary roots of Lepidium sativum L. Planta 215(6):980–988

    Article  CAS  PubMed  Google Scholar 

  8. Ottenschlager I, Wolff P, Wolverton C, Bhalerao RP, Sandberg G, Ishikawa H, Evans M, Palme K (2003) Gravity-regulated differential auxin transport from columella to lateral root cap cells. Proc Natl Acad Sci U S A 100(5):2987–2991

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Monshausen GB, Miller ND, Murphy AS, Gilroy S (2011) Dynamics of auxin-dependent Ca2+ and pH signaling in root growth revealed by integrating high-resolution imaging with automated computer vision-based analysis. Plant J 65(2):309–318

    Article  CAS  PubMed  Google Scholar 

  10. Band LR, Wells DM, Larrieu A, Sun JY, Middleton AM, French AP, Brunoud G, Sato EM, Wilson MH, Peret B, Oliva M, Swarup R, Sairanen I, Parry G, Ljung K, Beeckman T, Garibaldi JM, Estelle M, Owen MR, Vissenberg K, Hodgman TC, Pridmore TP, King JR, Vernoux T, Bennett MJ (2012) Root gravitropism is regulated by a transient lateral auxin gradient controlled by a tipping-point mechanism. Proc Natl Acad Sci U S A 109(12):4668–4673

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Mulkey TJ, Evans ML (1981) Geotropism in corn roots—evidence for its mediation by differential acid efflux. Science 212(4490):70–71

    Article  CAS  PubMed  Google Scholar 

  12. Zieschang HE, Kohler K, Sievers A (1993) Changing proton concentrations at the surfaces of gravistimulated Phleum roots. Planta 190(4):546–554

    Article  CAS  Google Scholar 

  13. Swanson SJ, Choi WG, Chanoca A, Gilroy S (2011) In vivo imaging of Ca2+, pH, and reactive oxygen species using fluorescent probes in plants. Annu Rev Plant Biol 62:273–297

    Article  CAS  PubMed  Google Scholar 

  14. Choi WG, Toyota M, Kim SH, Hilleary R, Gilroy S (2014) Salt stress-induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants. Proc Natl Acad Sci U S A 111(17):6497–6502

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Hejnowicz Z, Sondag C, Alt W, Sievers A (1998) Temporal course of graviperception in intermittently stimulated cress roots. Plant Cell Environ 21(12):1293–1300

    Article  CAS  PubMed  Google Scholar 

  16. Vitha S, Zhao LM, Sack FD (2000) Interaction of root gravitropism and phototropism in Arabidopsis wild-type and starchless mutants. Plant Physiol 122(2):453–461

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Perbal G, Jeune B, Lefranc A, Carnero-Diaz E, Driss-Ecole D (2002) The dose-response curve of the gravitropic reaction: a re-analysis. Physiol Plantarum 114(3):336–342

    Article  CAS  Google Scholar 

  18. Elsliger MA, Wachter RM, Hanson GT, Kallio K, Remington SJ (1999) Structural and spectral response of green fluorescent protein variants to changes in pH. Biochemistry 38(17):5296–5301

    Article  CAS  PubMed  Google Scholar 

  19. Hangarter RP, Stasinopoulos TC (1991) Effect of Fe-catalyzed photooxidation of EDTA on root-growth in plant culture media. Plant Physiol 96(3):843–847

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work on root ion signaling in the author’s laboratory is supported by grants from the National Science Foundation (MCB-1121994) and NASA (NNX13AM47G).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele B. Monshausen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Monshausen, G.B. (2015). Imaging of Dynamic Ion Signaling During Root Gravitropism. In: Blancaflor, E. (eds) Plant Gravitropism. Methods in Molecular Biology, vol 1309. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2697-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2697-8_5

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2696-1

  • Online ISBN: 978-1-4939-2697-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics