Skip to main content

Use of Microgravity Simulators for Plant Biological Studies

  • Protocol
Plant Gravitropism

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1309))

Abstract

Simulated microgravity and partial gravity research on Earth is highly convenient for every space biology researcher due to limitations of access to spaceflight. However, the use of ground-based facilities for microgravity simulation is far from simple. Microgravity simulation usually results in the need to consider additional environmental parameters which appear as secondary effects in the generation of altered gravity. These secondary effects may interfere with gravity alteration in the changes observed in the biological processes under study. Furthermore, ground-based facilities are also capable of generating hypergravity or fractional gravity conditions, which are worth being tested and compared with the results of microgravity exposure. Multiple technologies (2D clinorotation, random positioning machines, magnetic levitators or centrifuges), experimental hardware (proper use of containers and substrates for the seedlings or cell cultures), and experimental requirements (some life support/environmental parameters are more difficult to provide in certain facilities) should be collectively considered in defining the optimal experimental design that will allow us to anticipate, modify, or redefine the findings provided by the scarce spaceflight opportunities that have been (and will be) available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Herranz R, Anken R, Boonstra J, Braun M, Christianen PCM, Md G, Hauslage J, Hilbig R, Hill RJA, Lebert M, Medina FJ, Vagt N, Ullrich O, van Loon JJWA, Hemmersbach R (2013) Ground-based facilities for simulation of microgravity, including terminology and organism-specific recommendations for their use. Astrobiology 13(1):1–17. doi:10.1089/ast.2012.0876

    Article  PubMed Central  PubMed  Google Scholar 

  2. Albrecht-Buehler G (1991) Possible mechanisms of indirect gravity sensing by cells. ASGSB Bull 4(2):25–34

    CAS  PubMed  Google Scholar 

  3. van Loon JJWA (2007) Some history and use of the random positioning machine, RPM, in gravity related research. Adv Space Res 39:5

    Google Scholar 

  4. Beaugnon E, Tournier R (1991) Levitation of organic materials. Nature 349:470

    Article  Google Scholar 

  5. Valles JM Jr, Lin K, Denegre JM, Mowry KL (1997) Stable magnetic field gradient levitation of Xenopus laevis: toward low-gravity simulation. Biophys J 73(2):1130–1133. doi:10.1016/S0006-3495(97)78145-1, S0006-3495(97)78145-1 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Kittang AI, Iversen TH, Fossum KR, Mazars C, Carnero-Diaz E, Boucheron-Dubuisson E, Le Disquet I, Legue V, Herranz R, Pereda-Loth V, Medina FJ (2014) Exploration of plant growth and development using the European Modular Cultivation System facility on the International Space Station. Plant Biol (Stuttg) 16(3):528–538. doi:10.1111/plb.12132

    Article  Google Scholar 

  7. ESA GBF Web Page. (2014). http://www.esa.int/Our_Activities/Human_Spaceflight/Human_Spaceflight_Research/Ground_Based_Facilities. Accessed June 2014

  8. Borst AG, van Loon JJWA (2009) Technology and developments for the random positioning machine, RPM. Microgravity Sci Technol 21(4):287–292. doi:10.1007/s12217-008-9043-2

    Article  Google Scholar 

  9. van Loon JJWA, Tanck E, van Nieuwenhoven FA, Snoeckx LHEH, de Jong HAA, Wubbels RJ (2005) A brief overview of animal hypergravity studies. J Grav Physiol 12(1):5–10

    Google Scholar 

  10. van Loon JJ, Folgering EH, Bouten CV, Veldhuijzen JP, Smit TH (2003) Inertial shear forces and the use of centrifuges in gravity research. What is the proper control? J Biomech Eng 125(3):342–346

    Article  PubMed  Google Scholar 

  11. Kiss JZ, Millar KD, Edelmann RE (2012) Phototropism of Arabidopsis thaliana in microgravity and fractional gravity on the International Space Station. Planta 236(2):635–645. doi:10.1007/s00425-012-1633-y

    Article  CAS  PubMed  Google Scholar 

  12. Mazars C, Briere C, Grat S, Pichereaux C, Rossignol M, Pereda-Loth V, Eche B, Boucheron-Dubuisson E, Le Disquet I, Medina FJ, Graziana A, Carnero-Diaz E (2014) Microgravity induces changes in microsome-associated proteins of Arabidopsis seedlings grown on board the international space station. PLoS One 9(3):e91814. doi:10.1371/journal.pone.0091814

    Article  PubMed Central  PubMed  Google Scholar 

  13. Manzano AI, Herranz R, Van Loon J, Medina FJ (2012) A Hypergravity environment induced by centrifugation alters plant cell proliferation and growth in an opposite way to microgravity. Microgravity Sci Technol 24(6):373–381. doi:10.1007/s12217-012-9301

  14. Manzano AI, Larkin OJ, Dijkstra CE, Anthony P, Davey MR, Eaves L, Hill RJ, Herranz R, Medina FJ (2013) Meristematic cell proliferation and ribosome biogenesis are decoupled in diamagnetically levitated Arabidopsis seedlings. BMC Plant Biol 13(1):124. doi:10.1186/1471-2229-13-124

    Article  PubMed Central  PubMed  Google Scholar 

  15. Manzano AI, van Loon JJWA, Christianen P, Gonzalez-Rubio JM, Medina FJ, Herranz R (2012) Gravitational and magnetic field variations synergize to reveal subtle variations in the global transcriptional state of Arabidopsis in vitro callus cultures. BMC Genomics 13:105. doi:10.1186/1471-2164-13-105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Herranz R, Manzano AI, van Loon JJWA, Christianen PCM, Medina FJ (2013) Proteomic signature of Arabidopsis cell cultures exposed to magnetically induced hyper- and microgravity environments. Astrobiology 13(3):217–224. doi:10.1089/ast.2012.0883

    Article  CAS  PubMed  Google Scholar 

  17. Martzivanou M, Hampp R (2003) Hyper-gravity effects on the Arabidopsis transcriptome. Physiol Plant 118(2):221–231

    Article  CAS  PubMed  Google Scholar 

  18. Martzivanou M, Babbick M, Cogoli-Greuter M, Hampp R (2006) Microgravity-related changes in gene expression after short-term exposure of Arabidopsis thaliana cell cultures. Protoplasma 229(2):155–162

    Article  CAS  PubMed  Google Scholar 

  19. Barjaktarovic Z, Schutz W, Madlung J, Fladerer C, Nordheim A, Hampp R (2009) Changes in the effective gravitational field strength affect the state of phosphorylation of stress-related proteins in callus cultures of Arabidopsis thaliana. J Exp Bot 60(3):779–789. doi:10.1093/jxb/ern324, ern324 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Barjaktarovic Z, Nordheim A, Lamkemeyer T, Fladerer C, Madlung J, Hampp R (2007) Time-course of changes in amounts of specific proteins upon exposure to hyper-g, 2-D clinorotation, and 3-D random positioning of Arabidopsis cell cultures. J Exp Bot 58(15–16):4357–4363. doi:10.1093/jxb/erm302, erm302 [pii]

    Article  CAS  PubMed  Google Scholar 

  21. Menges M, Murray JA (2006) Synchronization, transformation, and cryopreservation of suspension-cultured cells. Methods Mol Biol 323:45–61. doi:10.1385/1-59745-003-0:45

    PubMed  Google Scholar 

  22. Cogoli A (1996) Biology under microgravity conditions in Spacelab International Microgravity Laboratory 2 (IML-2). J Biotechnol 47(2–3):67–70

    Article  CAS  PubMed  Google Scholar 

  23. Cogoli A, Cogoli-Greuter M (1997) Activation and proliferation of lymphocytes and other mammalian cells in microgravity. Adv Space Biol Med 6:33–79

    Article  CAS  PubMed  Google Scholar 

  24. Sieberer BJ, Kieft H, Franssen-Verheijen T, Emons AM, Vos JW (2009) Cell proliferation, cell shape, and microtubule and cellulose microfibril organization of tobacco BY-2 cells are not altered by exposure to near weightlessness in space. Planta 230(6):1129–1140. doi:10.1007/s00425-009-1010-7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Most of the results and comments included in this book chapter have been the consequence of the authors’ participation in “ESA Access to GBF” Project Nos. 4200022650 and 4000105761 in close collaboration with GBF managers Dr. van Loon (DESC), Dr. Hemmersbach (DLR), Dr. Pereda-Loth (Toulouse University), Dr. Hill (Nottingham University), and Dr. Christianen (Nijmegen University). Work performed in the authors’ laboratory was financially supported by the Spanish Plan Nacional de Investigación Científica y Desarrollo Tecnológico, Grant Ref. No. AYA2012-33982.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Raúl Herranz or F. Javier Medina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Herranz, R., Valbuena, M.A., Manzano, A., Y. Kamal, K., Medina, F.J. (2015). Use of Microgravity Simulators for Plant Biological Studies. In: Blancaflor, E. (eds) Plant Gravitropism. Methods in Molecular Biology, vol 1309. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2697-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2697-8_18

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2696-1

  • Online ISBN: 978-1-4939-2697-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics