Skip to main content

Live Cell and Immuno-Labeling Techniques to Study Gravitational Effects on Single Plant Cells

  • Protocol
Plant Gravitropism

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1309))

Abstract

The constant force of gravity plays a primordial role in the ontogeny of all living organisms. Plants, for example, develop their roots and shoots in accordance with the direction of the gravitational vector. Any change in the magnitude and/or the direction of gravity has an important impact on the development of tissues and cells. In order to understand how the gravitational force affects plant cell growth and differentiation, we established two complementary experimental procedures with which the effect of hyper-gravity on single plant cell development can be assessed. The single model cell system we used is the pollen tube or male gametophyte which, because of its rapid growth behavior, is known for its instant response to external stresses. The physiological response of the pollen tube can be assessed in a quantitative manner based on changes in the composition and spatial distribution of its cell wall components and in the precisely defined pattern of its very dynamic cytoplasmic streaming. Here, we provide a detailed description of the steps required for the immuno-localization of various cell wall components using microwave-assisted techniques and we explain how live imaging of the intracellular traffic can be achieved under hyper-gravity conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chebli Y, Bou Daher F, Sanyal M, Aouar L, Geitmann A (2008) Microwave assisted processing of plant cells for optical and electron microscopy. Bullet Microscop Soc Can 36(3):15–19

    Google Scholar 

  2. Mayers CP (1970) Histological fixation by microwave heating. J Clin Pathol 23(3):273–275

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Russin WA, Trivett CL (2001) Vacuum-Microwave combination for processing plant tissues for electron microscopy. In: Microwave Techniques and Protocols, Giberson RT and Demaree RS, Jr, eds, Humana Press, Totowa, JH, pp 25–35

    Google Scholar 

  4. Giberson, R.T. (2001). Vacuum-assisted microwave processing of animal tissues for electron microscopy. In Microwave Techniques and Protocols, R.T. Giberson and R.S. Demaree Jr, eds (Humana Press, Totowa, New Jersey), pp. 13–23

    Google Scholar 

  5. Chebli Y, Pujol L, Shojaeifard A, Brouwer I, Van Loon JJWA, Geitmann A (2013) Cell wall assembly and intracellular trafficking in plant cells are directly affected by changes in the magnitude of the gravitational force. PLoS One 8(3):e58246. doi:10.1371/journal.pone.0058246

    Article  PubMed Central  PubMed  Google Scholar 

  6. Chebli Y, Van Loon J, Geitmann A (2012) Live cell imaging under hyper-gravity conditions. Bullet Microscop Soc Can 40(3):8–12

    Google Scholar 

  7. van Loon JJWA, Krause J, Cunha H, Goncalves J, Almeida H, Schiller P (2008) The large diameter centrifuge, LDC, for life and physical sciences and technology. Paper presented at the proceedings of the ‘life in space for life on earth symposium’, Angers, France, 2008

    Google Scholar 

  8. Braun M (1997) Gravitropism in tip-growing cells. Planta 203:S11–S19

    Article  CAS  PubMed  Google Scholar 

  9. Braun M, Limbach C (2006) Rhizoids and protonemata of characean algae: model cells for research on polarized growth and plant gravity sensing. Protoplasma 229:133–142

    Article  CAS  PubMed  Google Scholar 

  10. Braun M, Wasteneys G (2000) Actin in characean rhizoids and protonemata. Tip growth, gravity sensing and photomorphogenesis. In: Staiger C, Baluska F, Volkmann P, Barlow P (eds) Actin: a dynamic framework for multiple plant cell functions. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 237–258

    Chapter  Google Scholar 

  11. Demkiv OT, Kordyum EL, Kardash OR, Khorkavtsiv OY (1999) Gravitropism and phototropism in protonemata of the moss Pohlia nutans (Hedw.) Lindb. Adv Space Res 23(12):1999–2004

    Article  CAS  PubMed  Google Scholar 

  12. Schwuchow J, Sack FD, Hartmann E (1990) Microtubule distribution in gravitropic protonemata of the moss Ceratodon. Protoplasma 159(1):60–69

    Article  CAS  PubMed  Google Scholar 

  13. Schwuchow JM, Kim D, Sack FD (1995) Caulonemal gravitropism and amyloplast sedimentation in the moss Funaria. Can J Bot 73:1029–1035

    Article  CAS  PubMed  Google Scholar 

  14. Sievers A, Buchen B, Hodick D (1996) Gravity sensing in tip-growing cells. Trends Plant Sci 1:273–279

    Article  CAS  PubMed  Google Scholar 

  15. Nedukha EM (1998) Effects of clinorotation on the polysaccharide content of resynthesized walls of protoplasts. Adv Space Res 21:1121–1126

    Article  CAS  PubMed  Google Scholar 

  16. Rasmussen O, Baggerud CA, Larssen HC, Evjen K, Iversen T-H (1994) The effect of 8 days of microgravity on regeneration of intact plants from protoplasts. Physiol Plant 92:404–411

    Article  CAS  Google Scholar 

  17. Rasmussen O, Klimchuk DA, Kordyum EL, Danevich LA, Tarnavskaya EB, Lozovaya VV, Tairbekov MG, Baggemd C, Iversen TH (1992) The effect of exposure to microgravity on the development and structural organisation of plant protoplasts flown on Biokosmos 9. Physiol Plant 84(1):162–170

    Article  CAS  PubMed  Google Scholar 

  18. Chatterjee A, Porterfield DM, Smith PJS, Roux SJ (2000) Gravity directed calcium current in germinating spores of Ceratopteris richardii. Planta 210:607–610

    Article  CAS  PubMed  Google Scholar 

  19. Edwards ES, Roux SJ (1998) Influence of gravity and light on the developmental polarity of Ceratopteris richardii fern spores. Planta 205:553–560

    Article  CAS  PubMed  Google Scholar 

  20. Roux SJ, Chatterjee A, Hillier S, Cannon T (2003) Early development of fern gametophytes in microgravity. Adv Space Res 31(1):215–220

    Article  PubMed  Google Scholar 

  21. Sieberer B, Kieft H, Franssen-Verheijen T, Emons A, Vos J (2009) Cell proliferation, cell shape, and microtubule and cellulose microfibril organization of tobacco BY-2 cells are not altered by exposure to near weightlessness in space. Planta 230(6):1129–1140

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Musgrave M, Kuang A, Allen J, Blasiak J, van Loon JJWA (2009) Brassica rapa L. seed development in hypergravity. Seed Sci Res 19:63–72

    Article  Google Scholar 

  23. Musgrave M, Kuang A, Allen J, van Loon J (2009) Hypergravity prevents seed production in Arabidopsis by disrupting pollen tube growth. Planta 230(5):863–870

    Article  CAS  PubMed  Google Scholar 

  24. Kuang A, Musgrave ME, Sharon WM, Cummins DB, Tucker SC (1995) Pollen and ovule development in Arabidopsis thaliana under spaceflight conditions. Am J Bot 82(5):585–595

    Article  CAS  PubMed  Google Scholar 

  25. Kuang A, Popoca A, McClure G, Musgrave M (2005) Dynamics of storage reserve deposition during Brassica rapa L. pollen and seed development in microgravity. Int J Plant Sci 166(1):85–96

    Article  CAS  PubMed  Google Scholar 

  26. van Loon JJWA (2007) Some history and use of the random positioning machine, RPM, in gravity related research. Adv Space Res 39(7):1161–1165

    Article  Google Scholar 

  27. Barjaktarović Ž, Nordheim A, Lamkemeyer T, Fladerer C, Madlung J, Hampp R (2007) Time-course of changes in amounts of specific proteins upon exposure to hyper-g, 2-D clinorotation, and 3-D random positioning of Arabidopsis cell cultures. J Exp Bot 58(15–16):4357–4363

    Article  PubMed  Google Scholar 

  28. De Micco V, Scala M, Aronne G (2006) Effects of simulated microgravity on male gametophyte of Prunus, Pyrus, and Brassica species. Protoplasma 228(1):121–126

    Article  PubMed  Google Scholar 

  29. De Micco V, Scala M, Aronne G (2006) Evaluation of the effect of clinostat rotation on pollen germination and tube development as a tool for selection of plants in Space. Acta Astronaut 58:464–470

    Article  Google Scholar 

  30. Skagen E, Iversen T-H (2000) Effect of simulated and real weightlessness on early regeneration stages of Brassica napus protoplasts. In Vitro Cell Dev Biol Plant 36:312–318

    Article  CAS  PubMed  Google Scholar 

  31. Manoonkitiwongsa PS, Schultz RL (2002) Proper nomenclature of formaldehyde and paraformaldehyde fixatives for histochemistry. Histochem J 34(6–7):365–367

    CAS  PubMed  Google Scholar 

  32. Friedrich ULD, Joop O, Pütz C, Willich G (1996) The slow rotating centrifuge microscope NIZEMI—a versatile instrument for terrestrial hypergravity and space microgravity research in biology and materials science. J Biotechnol 47(2–3):225–238

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Research in the Geitmann lab is supported by grants from the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Fonds Québécois de la Recherche sur la Nature et les Technologies (FQRNT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja Geitmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Chebli, Y., Geitmann, A. (2015). Live Cell and Immuno-Labeling Techniques to Study Gravitational Effects on Single Plant Cells. In: Blancaflor, E. (eds) Plant Gravitropism. Methods in Molecular Biology, vol 1309. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2697-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2697-8_16

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2696-1

  • Online ISBN: 978-1-4939-2697-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics