Skip to main content

Solubilization of Proteins: The Importance of Lysis Buffer Choice

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1312))

Abstract

The efficient extraction of proteins of interest from cells and tissues is not always straightforward. Here we demonstrate the differences in extraction of the focal adhesion protein Kindlin-2 from choriocarcinoma cells using NP-40 and RIPA lysis buffer. Furthermore, we demonstrate the use of a more denaturing urea/thiourea lysis buffer for solubilization, by comparing its effectiveness for solubilization of small heat-shock proteins from smooth muscle with the often utilized RIPA lysis buffer. Overall, the results demonstrate the importance of establishing the optimal lysis buffer for specific protein solubilization within the experimental workflow.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Grabski AC (2009) Advances in preparation of biological extracts for protein purification. Methods Enzymol 463:285–305

    CAS  PubMed  Google Scholar 

  2. Cordwell SJ (2008) Sequential extraction of proteins by chemical reagents. 2D PAGE: sample preparation and fractionation. In: Posch A (ed) Methods in molecular biology, vol 424. Humana, Totowa, NJ, pp 139–146

    Google Scholar 

  3. Harlow E, Lane E (1988) Immunoprecipitation. In: Harlow E, Lane D (eds) Antibodies: a laboratory manual. Cold Spring Harbor Laboratory, New York, NY, p 231

    Google Scholar 

  4. Rosenberg IM (2005) Protein analysis and purification, 2nd edn. Birkhauser, Boston, p 37

    Google Scholar 

  5. Helenius A, Simons K (1975) Solubilization of membranes by detergents. Biochim Biophys Acta 415:29–79

    Article  CAS  PubMed  Google Scholar 

  6. Helenius A, McCaslin DR, Fries E, Tanford C (1979) Properties of detergents. Methods Enzymol 56:734–749

    CAS  PubMed  Google Scholar 

  7. Dawson RMC, Elliot DC, Elliot WH, Jones KM (1986) pH, buffers, and physiological media. Data for biochemical research. Oxford University Press, New York, In, pp 417–448

    Google Scholar 

  8. Linke D (2009) Detergents: an overview. Methods Enzymol 463:603–617

    CAS  PubMed  Google Scholar 

  9. Gromov P, Celis JE, Gromova I, Rank F, Timmermans-Wielenga V, Moreira JMA (2008) A single lysis solution for the analysis of tissue samples by different proteomic technologies. Mol Oncol 2:368–379

    Article  PubMed  Google Scholar 

  10. Salinthone S, Gerhoffer WT (2008) Small heat shock proteins in smooth muscle. Pharmacol Ther 119:44–54

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Laskowska E, Matuszewska E, Kuczynska-Wisnik D (2010) Small heat shock proteins and protein misfolding diseases. Curr Pharm Biotechnol 11:146–157

    Article  CAS  PubMed  Google Scholar 

  12. Kato K, Goto S, Inaguma Y, Hasegawa K, Morishita R, Asano T (1994) Purification and characterization of a 20 kDa protein that is highly homologous to alpha B crystallin. J Biol Chem 269:15302–15309

    Google Scholar 

  13. Pipkin W, Johnson JA, Creazzo TL, Burch J, Komalavilas P, Brophy CM (2003) Localization, macromolecular associations, and function of the small heat shock related protein HSP20 in rat heart. Circulation 107:469–476

    Article  CAS  PubMed  Google Scholar 

  14. Sun X, Fontaine J-M, Rest JS, Sheldon EA, Welsh MJ, Benndorf R (2004) Interaction of human hsp22 (HSPB8) with other small heat shock proteins. J Biol Chem 279:2394–2402

    Article  CAS  PubMed  Google Scholar 

  15. Gusev NB, Bogatcheva NV, Marston SB (2002) Structure and properties of small heat shock proteins and their interaction with cytoskeleton proteins. Biochemistry (Moscow) 67:511–519

    Article  CAS  Google Scholar 

  16. Drieza CM, Komalavilas P, Furnish EJ, Flynn CR, Sheller MR, Smoke CC, Lopes LB, Brophy CM (2010) The small heat shock protein, HSPB6, in muscle function and disease. Cell Stress Chaperones 15:1–11

    Article  Google Scholar 

  17. Williams SJ, Shynlova O, Lye SJ, MacPhee DJ (2009) Spatiotemporal expression of α1, α3, and β1 integrin subunits is altered in rat myometrium during pregnancy and labour. Reprod Fertil Dev 22:718–732

    Article  Google Scholar 

  18. Palliser HK, Zakar T, Symonds IM, Hirst JJ (2010) Progesterone receptor isoform expression in the Guinea Pig myometrium from normal and growth restricted pregnancies. Reprod Sci 17:776–782

    Article  CAS  PubMed  Google Scholar 

  19. Shynlova O, Dorogin A, Lye SJ (2010) Stretch-induced uterine myocyte differentiation during rat pregnancy: involvement of caspase activation. Biol Reprod 82:1248–1255

    Article  CAS  PubMed  Google Scholar 

  20. Huo P, Zhao L, Li Y, Luo F, Wang S, Song J, Bai J (2014) Comparative expression of thioredoxin-1 in uterine leiomyomas and myometrium. Mol Hum Reprod 20:148–154

    Article  Google Scholar 

  21. Elustondo PA, Hannigan GE, Caniggia I, MacPhee DJ (2006) Integrin-linked kinase (ILK) is highly expressed in first trimester human chorionic villi and regulates migration of a human cytotrophoblast-derived cell line. Biol Reprod 74:959–968

    Article  CAS  PubMed  Google Scholar 

  22. Butler TM, Elustondo PA, Hannigan GE, MacPhee DJ (2009) Integrin-linked kinase can facilitate syncytialization and hormonal differentiation of the human trophoblast-derived BeWo cell line. Reprod Biol Endocrinol 7:51

    Article  PubMed Central  PubMed  Google Scholar 

  23. Tyson EK, MacIntyre DA, Smith R, Chan E-C, Read M (2008) Evidence that a protein kinase A substrate, small heat shock protein 20, modulates myometrial relaxation in human pregnancy. Endocrinology 149:6157–6165

    Article  CAS  PubMed  Google Scholar 

  24. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  25. Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. Pp, 2344

    Google Scholar 

  26. MacPhee DJ (2010) Methodological considerations for improving western blot analysis. J Pharmacol Toxicol Meth 61:171–177

    Article  CAS  Google Scholar 

  27. Yates LD, Greaser ML (1983) Quantitative determination of myosin and actin in rabbit skeletal muscle. J Mol Biol 168:123–141

    Article  CAS  PubMed  Google Scholar 

  28. Yates LD, Greaser ML (1983) Troponin subunit stoichiometry and content in rabbit skeletal muscle and myofibrils. J Biol Chem 258:5770–5774

    CAS  PubMed  Google Scholar 

  29. Pace CN, Marshall HF Jr (1980) A comparison of the effectiveness of protein denaturants for β-lactoglobulin and ribonuclease. Arch Biochem Biophys 199:270–276

    Article  CAS  PubMed  Google Scholar 

  30. Weiss W, Gorg A (2008) Sample solubilization buffers for two-dimensional electrophoresis. 2D PAGE: Sample preparation and fractionation. In: Posch A (ed) Methods in molecular biology, vol 424. Humana Press, New Jersey, pp 35–42

    Google Scholar 

  31. Gorg A, Drews O, Weiss W (2006) Extraction and solubilization of total protein from mammalian tissue samples. Cold Spring Harb Protoc . pp 3. doi:10.1101/pdb.prot4226

  32. Rabilloud T (1998) Use of thiourea to increase the solubility of membrane proteins in two dimensional electrophoresis. Electrophoresis 19:755–760

    Google Scholar 

  33. Simpson RJ (2009) Preparation of cellular and subcellular extracts. In: Simpson RJ, Adams PD, Golemis EA (eds) Basic methods in protein purification and analysis. Cold Spring Harbor Laboratory Press, New York, pp 39–78

    Google Scholar 

  34. Towbin H, Gordon J (1984) Immunoblotting and dot immunobinding – current status and outlook. J Immunol Methods 72:313–340

    Article  CAS  PubMed  Google Scholar 

  35. DenHollander N, Befus D (1989) Loss of antigens from immunoblotting membranes. J Immunol Methods 122:129–135

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by a Natural Sciences and Engineering Research Council Discovery Grant (#250218), an Establishment Grant from the Saskatchewan Health Research Foundation (SHRF; #2695), and a regional partnership program grant from SHRF (#2776) and the Canadian Institutes of Health Research (#ROP-101051) to D.J.M. M.P. and N.M. were holders of Alexander Graham Bell NSERC postgraduate fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. MacPhee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Peach, M., Marsh, N., Miskiewicz, E.I., MacPhee, D.J. (2015). Solubilization of Proteins: The Importance of Lysis Buffer Choice. In: Kurien, B., Scofield, R. (eds) Western Blotting. Methods in Molecular Biology, vol 1312. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2694-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2694-7_8

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2693-0

  • Online ISBN: 978-1-4939-2694-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics