Skip to main content

Shift-Western Blotting: Separate Analysis of Protein and DNA from Protein–DNA Complexes

  • Protocol
Western Blotting

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1312))

Abstract

The electrophoretic mobility shift assay (EMSA) is the most frequently used experiment for studying protein–DNA interactions and to identify DNA-binding proteins. Protein–DNA complexes formed during EMSA experiments can be further analyzed by shift-western blotting, where the protein and DNA components contained in a polyacrylamide gel are transferred to stacked membranes: First a nitrocellulose membrane retains the proteins while double-stranded DNA passes through the nitrocellulose membrane and binds only to a charged membrane placed below. Immobilized proteins can then be stained with specific antibodies while the DNA can be detected by a radioactive label or a nonradioactive detection system. Shift-western blotting can overcome many limitations of supershift experiments and allows for the analysis of complex protein–DNA complexes containing multiple protein factors. Moreover, proteins and/or DNA may be recovered from membranes after the blotting step for further analysis by other means.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spitz F, Furlong EE (2012) Transcription factors: from enhancer binding to developmental control. Nat Rev Genet 13:613–626

    Article  CAS  PubMed  Google Scholar 

  2. Woringer M, Darzacq X, Izeddin I (2014) Geometry of the nucleus: a perspective on gene expression regulation. Curr Opin Chem Biol 20C:112–119

    Article  Google Scholar 

  3. Kodzius R, Kojima M, Nishiyori H, Nakamura M, Fukuda S, Tagami M, Sasaki D, Imamura K, Kai C, Harbers M, Hayashizaki Y, Carninci P (2006) CAGE: cap analysis of gene expression. Nat Methods 3:211–222

    Article  CAS  PubMed  Google Scholar 

  4. Shiraki T, Kondo S, Katayama S, Waki K, Kasukawa T, Kawaji H, Kodzius R, Watahiki A, Nakamura M, Arakawa T, Fukuda S, Sasaki D, Podhajska A, Harbers M, Kawai J, Carninci P, Hayashizaki Y (2003) Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage. Proc Natl Acad Sci U S A 100:15776–15781

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Forrest AR, Kawaji H, Rehli M, Baillie JK, de Hoon MJ, Lassmann T, Itoh M, Summers KM, Suzuki H, Daub CO, Kawai J, Heutink P, Hide W, Freeman TC, Lenhard B, Bajic VB, Taylor MS, Makeev VJ, Sandelin A, Hume DA, Carninci P, Hayashizaki Y (2014) A promoter-level mammalian expression atlas. Nature 507:462–470

    Article  CAS  PubMed  Google Scholar 

  6. (2012) An integrated encyclopedia of DNA elements in the human genome. Nature. 489: 57–74

    Google Scholar 

  7. Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, Boyd M, Chen Y, Zhao X, Schmidl C, Suzuki T, Ntini E, Arner E, Valen E, Li K, Schwarzfischer L, Glatz D, Raithel J, Lilje B, Rapin N, Bagger FO, Jorgensen M, Andersen PR, Bertin N, Rackham O, Burroughs AM, Baillie JK, Ishizu Y, Shimizu Y, Furuhata E, Maeda S, Negishi Y, Mungall CJ, Meehan TF, Lassmann T, Itoh M, Kawaji H, Kondo N, Kawai J, Lennartsson A, Daub CO, Heutink P, Hume DA, Jensen TH, Suzuki H, Hayashizaki Y, Muller F, Forrest AR, Carninci P, Rehli M, Sandelin A (2014) An atlas of active enhancers across human cell types and tissues. Nature 507:455–461

    Article  CAS  PubMed  Google Scholar 

  8. Furey TS (2012) ChIP-seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions. Nat Rev Genet 13:840–852

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Sims D, Sudbery I, Ilott NE, Heger A, Ponting CP (2014) Sequencing depth and coverage: key considerations in genomic analyses. Nat Rev Genet 15:121–132

    Article  CAS  PubMed  Google Scholar 

  10. Carey MF, Peterson CL, Smale ST (2012) Experimental strategies for the identification of DNA-binding proteins. Cold Spring Harb Protoc 2012:18–33

    PubMed  Google Scholar 

  11. Jiang D, Jarrett HW, Haskins WE (2009) Methods for proteomic analysis of transcription factors. J Chromatogr A 1216:6881–6889

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Hellman LM, Fried MG (2007) Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions. Nat Protoc 2:1849–1861

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Aranda A, Alonso-Merino E, Zambrano A (2013) Receptors of thyroid hormones. Pediatr Endocrinol Rev 11:2–13

    PubMed  Google Scholar 

  14. Evans RM, Mangelsdorf DJ (2014) Nuclear receptors, RXR, and the big bang. Cell 157:255–266

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Mendoza-Parra MA, Gronemeyer H (2013) Genome-wide studies of nuclear receptors in cell fate decisions. Semin Cell Dev Biol 24:706–715

    Article  CAS  PubMed  Google Scholar 

  16. Rastinejad F, Huang P, Chandra V, Khorasanizadeh S (2013) Understanding nuclear receptor form and function using structural biology. J Mol Endocrinol 51:T1–T21

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Xiao X, Wang P, Chou KC (2013) Recent progresses in identifying nuclear receptors and their families. Curr Top Med Chem 13:1192–1200

    Article  CAS  PubMed  Google Scholar 

  18. Harbers M, Wahlstrom GM, Vennstrom B (1996) Transactivation by the thyroid hormone receptor is dependent on the spacer sequence in hormone response elements containing directly repeated half-sites. Nucleic Acids Res 24:2252–2259

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Harbers M, Wahlstrom GM, Vennstrom B (1998) Identification of DNA binding sites for the V-erbA oncoprotein, the viral homolog to thyroid hormone receptor alpha. J Steroid Biochem Mol Biol 67:181–191

    Article  CAS  PubMed  Google Scholar 

  20. Demczuk S, Harbers M, Vennstrom B (1993) Identification and analysis of all components of a gel retardation assay by combination with immunoblotting. Proc Natl Acad Sci U S A 90:2574–2578

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Hirano F, Tanaka H, Hirano Y, Hiramoto M, Handa H, Makino I, Scheidereit C (1998) Functional interference of Sp1 and NF-kappaB through the same DNA binding site. Mol Cell Biol 18:1266–1274

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Kontgen F, Grumont RJ, Strasser A, Metcalf D, Li R, Tarlinton D, Gerondakis S (1995) Mice lacking the c-rel proto-oncogene exhibit defects in lymphocyte proliferation, humoral immunity, and interleukin-2 expression. Genes Dev 9:1965–1977

    Article  CAS  PubMed  Google Scholar 

  23. Vettese-Dadey M, Grant PA, Hebbes TR, Crane-Robinson C, Allis CD, Workman JL (1996) Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro. Embo J 15:2508–2518

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Wilhelm M, Schlegl J, Hahne H, Moghaddas GA, Lieberenz M, Savitski MM, Ziegler E, Butzmann L, Gessulat S, Marx H, Mathieson T, Lemeer S, Schnatbaum K, Reimer U, Wenschuh H, Mollenhauer M, Slotta-Huspenina J, Boese JH, Bantscheff M, Gerstmair A, Faerber F, Kuster B (2014) Mass-spectrometry-based draft of the human proteome. Nature 509:582–587

    Article  CAS  PubMed  Google Scholar 

  25. Ding C, Chan DW, Liu W, Liu M, Li D, Song L, Li C, Jin J, Malovannaya A, Jung SY, Zhen B, Wang Y, Qin J (2013) Proteome-wide profiling of activated transcription factors with a concatenated tandem array of transcription factor response elements. Proc Natl Acad Sci U S A 110:6771–6776

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Zhu G, Cai G, Liu Y, Tan H, Yu C, Huang M, Wei M, Li S, Cui X, Huang D, Tian Y, Zhang X (2014) Quantitative iTRAQ LC-MS/MS proteomics reveals transcription factor crosstalk and regulatory networks in hypopharyngeal squamous cell carcinoma. J Cancer 5:525–536

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Luque-Garcia JL, Zhou G, Spellman DS, Sun TT, Neubert TA (2008) Analysis of electroblotted proteins by mass spectrometry: protein identification after Western blotting. Mol Cell Proteomics 7:308–314

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Luque-Garcia JL, Zhou G, Sun TT, Neubert TA (2006) Use of nitrocellulose membranes for protein characterization by matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 78:5102–5108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Dignam JD, Lebovitz RM, Roeder RG (1983) Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res 11:1475–1489

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Carey MF, Peterson CL, Smale ST (2009) Dignam and Roeder nuclear extract preparation. Cold Spring Harb Protoc. 2009: pdb prot5330

    Google Scholar 

  31. Kigawa T, Yabuki T, Matsuda N, Matsuda T, Nakajima R, Tanaka A, Yokoyama S (2004) Preparation of Escherichia coli cell extract for highly productive cell-free protein expression. J Struct Funct Genomics 5:63–68

    Article  CAS  PubMed  Google Scholar 

  32. Harbers M (2014) Wheat germ systems for cell-free protein expression. FEBS Lett 588(17):2762–2773

    Google Scholar 

  33. Jackson RJ, Hunt T (1983) Preparation and use of nuclease-treated rabbit reticulocyte lysates for the translation of eukaryotic messenger RNA. Methods Enzymol 96:50–74

    CAS  PubMed  Google Scholar 

  34. Ezure T, Suzuki T, Higashide S, Shintani E, Endo K, Kobayashi S, Shikata M, Ito M, Tanimizu K, Nishimura O (2006) Cell-free protein synthesis system prepared from insect cells by freeze-thawing. Biotechnol Prog 22:1570–1577

    Article  CAS  PubMed  Google Scholar 

  35. Mikami S, Masutani M, Sonenberg N, Yokoyama S, Imataka H (2006) An efficient mammalian cell-free translation system supplemented with translation factors. Protein Expr Purif 46:348–357

    Article  CAS  PubMed  Google Scholar 

  36. Harbers M (2008) The current status of cDNA cloning. Genomics 91:232–242

    Article  CAS  PubMed  Google Scholar 

  37. Liu J, Stormo GD (2005) Combining SELEX with quantitative assays to rapidly obtain accurate models of protein-DNA interactions. Nucleic Acids Res 33:e141

    Article  PubMed Central  PubMed  Google Scholar 

  38. Taussig MJ, Schmidt R, Cook EA, Stoevesandt O (2013) Development of proteome-wide binding reagents for research and diagnostics. Proteomics Clin Appl 7:756–766

    Article  CAS  PubMed  Google Scholar 

  39. Siu FK, Lee LT, Chow BK (2008) Southwestern blotting in investigating transcriptional regulation. Nat Protoc 3:51–58

    Article  CAS  PubMed  Google Scholar 

  40. Harper S, Speicher DW (2001) Detection of proteins on blot membranes. Curr Protoc Protein Sci. Chapter 10, Unit 10 18

    Google Scholar 

  41. Anderson PJ (1985) The recovery of nitrocellulose-bound protein. Anal Biochem 148:105–110

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

I want to express my special thanks to Stephen Demczuk and Björn Vennström, with whom I had originally developed the shift-western blotting method, and Piero Carninci for his help to make this protocol possible. I further want to thank Mitch Dushay for critically reading the manuscript and his suggestions to improve the text. This work was supported by a research grant from the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) to the RIKEN Center for Life Science Technologies (No. 95).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Harbers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Harbers, M. (2015). Shift-Western Blotting: Separate Analysis of Protein and DNA from Protein–DNA Complexes. In: Kurien, B., Scofield, R. (eds) Western Blotting. Methods in Molecular Biology, vol 1312. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2694-7_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2694-7_36

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2693-0

  • Online ISBN: 978-1-4939-2694-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics