Skip to main content

Multistrip Western Blotting: A Tool for Comparative Quantitative Analysis of Multiple Proteins

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1312))

Abstract

The qualitative and quantitative measurements of protein abundance and modification states are essential in understanding their functions in diverse cellular processes. Typical Western blotting, though sensitive, is prone to produce substantial errors and is not readily adapted to high-throughput technologies. Multistrip Western blotting is a modified immunoblotting procedure based on simultaneous electrophoretic transfer of proteins from multiple strips of polyacrylamide gels to a single membrane sheet. In comparison with the conventional technique, Multistrip Western blotting increases data output per single blotting cycle up to tenfold; allows concurrent measurement of up to nine different total and/or posttranslationally modified protein expression obtained from the same loading of the sample; and substantially improves the data accuracy by reducing immunoblotting-derived signal errors. This approach enables statistically reliable comparison of different or repeated sets of data and therefore is advantageous to apply in biomedical diagnostics, systems biology, and cell signaling research.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Soundy P, Harvey B (2005) Western blotting as a diagnostic method. In: Walker JM, Rapley R (eds) Medical biomethods handbook. Humana, Totowa, NJ, pp 43–62

    Chapter  Google Scholar 

  2. Omenn GS (2006) Strategies for plasma proteomic profiling of cancers. Proteomics 6:5662–5673

    Article  CAS  PubMed  Google Scholar 

  3. Hueber W, Robinson WH (2006) Proteomic biomarkers for autoimmune disease. Proteomics 6:4100–4105

    Article  CAS  PubMed  Google Scholar 

  4. Fardilha M, Wu W, Sa R, Fidalgo S, Sousa C, Mota C, da Cruz e Silva OA, da Cruz e Silva EF (2004) Alternatively spliced protein variants as potential therapeutic targets for male infertility and contraception. Ann N Y Acad Sci 1030:468–478

    Article  CAS  PubMed  Google Scholar 

  5. Ducruet AP, Vogt A, Wipf P, Lazo JS (2005) Dual specificity protein phosphatases: therapeutic targets for cancer and Alzheimer’s disease. Annu Rev Pharmacol Toxicol 45:725–750

    Article  CAS  PubMed  Google Scholar 

  6. Gaiger A, Heintel D, Jager U (2004) Novel molecular diagnostic and therapeutic targets in chronic lymphocytic leukaemia. Eur J Clin Invest 34(Suppl 2):25–30

    Article  CAS  PubMed  Google Scholar 

  7. Sawyer TK (2004) Cancer metastasis therapeutic targets and drug discovery: emerging small-molecule protein kinase inhibitors. Expert Opin Investig Drugs 13:1–19

    Article  CAS  PubMed  Google Scholar 

  8. Krause DS, Van Etten RA (2005) Tyrosine kinases as targets for cancer therapy. N Engl J Med 353:172–187

    Article  CAS  PubMed  Google Scholar 

  9. Kholodenko BN (2006) Cell-signalling dynamics in time and space. Nat Rev Mol Cell Biol 7:165–176

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Kurien BT, Scofield RH (2006) Western blotting. Methods 38:283–293

    Article  CAS  PubMed  Google Scholar 

  11. Schilling M, Maiwald T, Bohl S, Kollmann M, Kreutz C, Timmer J, Klingmuller U (2005) Quantitative data generation for systems biology: the impact of randomisation, calibrators and normalisers. Syst Biol (Stevenage) 152:193–200

    Article  CAS  Google Scholar 

  12. Bergendahl V, Glaser BT, Burgess RR (2003) A fast Western blot procedure improved for quantitative analysis by direct fluorescence labeling of primary antibodies. J Immunol Methods 277:117–125

    Article  CAS  PubMed  Google Scholar 

  13. Bolt MW, Mahoney PA (1997) High-efficiency blotting of proteins of diverse sizes following sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Anal Biochem 247:185–192

    Article  CAS  PubMed  Google Scholar 

  14. Kashino Y, Koike H, Satoh K (2001) An improved sodium dodecyl sulfate-polyacrylamide gel electrophoresis system for the analysis of membrane protein complexes. Electrophoresis 22:1004–1007

    Article  CAS  PubMed  Google Scholar 

  15. Kurien BT, Scofield RH (2002) Heat-mediated, ultra-rapid electrophoretic transfer of high and low molecular weight proteins to nitrocellulose membranes. J Immunol Methods 266:127–133

    Article  CAS  PubMed  Google Scholar 

  16. Swank MW, Kumar V, Zhao J, Wu GY (2006) A novel method of loading samples onto mini-gels for SDS-PAGE: Increased sensitivity and Western blots using sub-microgram quantities of protein. J Neurosci Methods 158:224–33

    Article  CAS  PubMed  Google Scholar 

  17. Wu M, Stockley PG, Martin WJ 2nd (2002) An improved western blotting technique effectively reduces background. Electrophoresis 23:2373–2376

    Article  CAS  PubMed  Google Scholar 

  18. Schilling M, Maiwald T, Bohl S, Kollmann M, Kreutz C, Timmer J, Klingmuller U (2005) Computational processing and error reduction strategies for standardized quantitative data in biological networks. Febs J 272:6400–6411

    Article  CAS  PubMed  Google Scholar 

  19. Aksamitiene E, Hoek JB, Kholodenko B, Kiyatkin A (2007) Multistrip Western blotting to increase quantitative data output. Electrophoresis 28:3163–3173

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Welinder C, Ekblad L (2011) Coomassie staining as loading control in Western blot analysis. J Proteome Res 10:1416–1419

    Article  CAS  PubMed  Google Scholar 

  21. Romero-Calvo I, Ocon B, Martinez-Moya P, Suarez MD, Zarzuelo A, Martinez-Augustin O, de Medina FS (2010) Reversible Ponceau staining as a loading control alternative to actin in Western blots. Anal Biochem 401:318–320

    Article  CAS  PubMed  Google Scholar 

  22. Aldridge GM, Podrebarac DM, Greenough WT, Weiler IJ (2008) The use of total protein stains as loading controls: an alternative to high-abundance single-protein controls in semi-quantitative immunoblotting. J Neurosci Methods 172:250–254

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Kar P, Agnihotri SK, Sharma A, Sachan R, Lal Bhatt M, Sachdev M (2012) A protocol for stripping and reprobing of Western blots originally developed with colorimetric substrate TMB. Electrophoresis 33:3062–3065

    Article  CAS  PubMed  Google Scholar 

  24. Sennepin AD, Charpentier S, Normand T, Sarre C, Legrand A, Mollet LM (2009) Multiple reprobing of Western blots after inactivation of peroxidase activity by its substrate, hydrogen peroxide. Anal Biochem 393:129–131

    Article  CAS  PubMed  Google Scholar 

  25. Upadhaya R, Mizunoya W, Anderson JE (2011) Detecting multiple proteins by Western blotting using same-species primary antibodies, precomplexed serum, and hydrogen peroxide. Anal Biochem 419:342–344

    Article  CAS  PubMed  Google Scholar 

  26. Suzuki O, Koura M, Noguchi Y, Uchio-Yamada K, Matsuda J (2011) Use of sample mixtures for standard curve creation in quantitative western blots. Exp Anim 60:193–196

    Article  CAS  PubMed  Google Scholar 

  27. Dittmer A, Dittmer J (2006) Beta-actin is not a reliable loading control in Western blot analysis. Electrophoresis 27:2844–2845

    Article  CAS  PubMed  Google Scholar 

  28. Khimani AH, Mhashilkar AM, Mikulskis A, O’Malley M, Liao J, Golenko EE, Mayer P, Chada S, Killian JB, Lott ST (2005) Housekeeping genes in cancer: normalization of array data. Biotechniques 38:739–745

    Article  CAS  PubMed  Google Scholar 

  29. Janssens N, Janicot M, Perera T, Bakker A (2004) Housekeeping genes as internal standards in cancer research. Mol Diagn 8:107–113

    Article  PubMed  Google Scholar 

  30. Caradec J, Sirab N, Revaud D, Keumeugni C, Loric S (2010) Is GAPDH a relevant housekeeping gene for normalisation in colorectal cancer experiments? Br J Cancer 103:1475–1476

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Waxman S, Wurmbach E (2007) De-regulation of common housekeeping genes in hepatocellular carcinoma. BMC Genomics 8:243

    Article  PubMed Central  PubMed  Google Scholar 

  32. Rubie C, Kempf K, Hans J, Su T, Tilton B, Georg T, Brittner B, Ludwig B, Schilling M (2005) Housekeeping gene variability in normal and cancerous colorectal, pancreatic, esophageal, gastric and hepatic tissues. Mol Cell Probes 19:101–109

    Article  CAS  PubMed  Google Scholar 

  33. Sikand K, Singh J, Ebron JS, Shukla GC (2012) Housekeeping gene selection advisory: glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and beta-actin are targets of miR-644a. PLoS One 7:e47510

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Ferguson RE, Carroll HP, Harris A, Maher ER, Selby PJ, Banks RE (2005) Housekeeping proteins: a preliminary study illustrating some limitations as useful references in protein expression studies. Proteomics 5:566–571

    Article  CAS  PubMed  Google Scholar 

  35. Taylor SC, Berkelman T, Yadav G, Hammond M (2013) A defined methodology for reliable quantification of Western blot data. Mol Biotechnol 55:217–226

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Aksamitiene E, Achanta S, Kolch W, Kholodenko BN, Hoek JB, Kiyatkin A (2011) Prolactin-stimulated activation of ERK1/2 mitogen-activated protein kinases is controlled by PI3-kinase/Rac/PAK signaling pathway in breast cancer cells. Cell Signal 23:1794–1805

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Simpson RJ (2010) Pouring linear gradient gels with a gradient former. Cold Spring Harbor Protoc. 2010: pdb prot5411

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Dr. Boris N Kholodenko for his support. This work was supported by National Institutes of Health Grants GM59570, AA018873, AA017261, AA007463, and AA022417.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoly Kiyatkin Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Aksamitiene, E., Hoek, J.B., Kiyatkin, A. (2015). Multistrip Western Blotting: A Tool for Comparative Quantitative Analysis of Multiple Proteins. In: Kurien, B., Scofield, R. (eds) Western Blotting. Methods in Molecular Biology, vol 1312. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2694-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2694-7_23

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2693-0

  • Online ISBN: 978-1-4939-2694-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics