Skip to main content

Spacer-Based Macroarrays for CRISPR Genotyping

  • Protocol
CRISPR

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1311))

Abstract

Macroarray-based analysis is a powerful and economic format to study variations in “clustered regularly interspaced short palindromic repeat (CRISPR)” loci in bacteria. To date, it was used almost exclusively for Mycobacterium tuberculosis and was named spoligotyping (spacer oligonucleotides typing). Here, we describe the pipeline of this approach that includes search of loci and selection of spacers, preparation of the membrane with immobilized probes and spoligotyping itself (PCR and reverse hybridization).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hermans PWM, van Soolingen D, Bik EM, de Haas PEW, Dale JW, van Embden JDA (1991) The insertion element IS987 from Mycobacterium bovis BCG is located in a hot-spot integration region for insertion elements in Mycobacterium tuberculosis complex strains. Infect Immun 59:2695–2705

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Groenen PM, Bunschoten AE, van Soolingen D, van Embden JD (1995) Nature of DNA polymorphism in the direct repeat cluster of Mycobacterium tuberculosis; application for strain differentiation by a novel typing method. Mol Microbiol 10:1057–1065

    Article  Google Scholar 

  3. Kamerbeek J, Schouls L, Kolk A, van Agterveld M, van Soolingen D, Kuijper S et al (1997) Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol 35:907–914

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Kremer K, Bunschoten A, Schouls L, van Soolingen D, and van Embden J (2002) Spoligotyping—a PCR-based method to simultaneously detect and type Mycobacterium tuberculosis complex bacteria, version 4, 11/8/02. www.tuberculosis.rivm.nl/documents/ECDC/protocol%20spoligotyping.pdf

  5. Demay C, Liens B, Burguière T, Hill V, Couvin D, Millet J et al (2012) SITVITWEB—a publicly available international multimarker database for studying Mycobacterium tuberculosis genetic diversity and molecular epidemiology. Infect Genet Evol 12:755–766

    Article  CAS  PubMed  Google Scholar 

  6. van Embden JDA, van Gorkom T, Kremer K, Jansen T, van der Zeijst BAM, Schouls LM (2000) Genetic variation and evolutionary origin of the direct repeat locus of Mycobacterium tuberculosis complex bacteria. J Bacteriol 182:2393–2401

    Article  PubMed Central  PubMed  Google Scholar 

  7. van der Zanden AG, Kremer K, Schouls LM (2002) Improvement of differentiation and interpretability of spoligotyping for Mycobacterium tuberculosis complex isolates by introduction of new spacer oligonucleotides. J Clin Microbiol 40:4628–4639

    Article  PubMed Central  PubMed  Google Scholar 

  8. Brudey K, Gutierrez MC, Vincent V, Parsons LM, Salfinger M, Rastogi N et al (2004) Mycobacterium africanum genotyping using novel spacer oligonucleotides in the direct repeat locus. J Clin Microbiol 42:5053–5057

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Javed MT, Aranaz A, de Juan L, Bezos J, Romero B, Alvarez J et al (2007) Improvement of spoligotyping with additional spacer sequences for characterization of Mycobacterium bovis and M. caprae isolates from Spain. Tuberculosis 87:437–445

    Article  PubMed  Google Scholar 

  10. Zhang J, Abadia E, Refregier G, Tafaj S, Boschiroli ML, Guillard B, Andremont A et al (2010) Mycobacterium tuberculosis complex CRISPR genotyping: improving efficiency, throughput and discriminative power of “spoligotyping” with new spacers and a microbead-based hybridization assay. J Med Microbiol 59:285–294

    Article  PubMed  Google Scholar 

  11. Sola C, Filliol I, Legrand E, Lesjean S, Locht C, Supply P et al (2003) Genotyping of the Mycobacterium tuberculosis complex using MIRUs: association with VNTR and spoligotyping for molecular epidemiology and evolutionary genetics. Infect Genet Evol 3:125–133

    Article  CAS  PubMed  Google Scholar 

  12. Jansen R, Embden JD, Gaastra W, Schouls LM (2002) Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43:1565–1575

    Article  CAS  PubMed  Google Scholar 

  13. Mokrousov I, Narvskaya O, Limeschenko E, Vyazovaya A (2005) Efficient discrimination within a Corynebacterium diphtheriae epidemic clonal group by a novel macroarray-based method. J Clin Microbiol 43:1662–1668

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Mokrousov I, Limeschenko E, Vyazovaya A, Narvskaya O (2007) Corynebacterium diphtheriae spoligotyping based on combined use of two CRISPR loci. Biotechnol J 2:901–906

    Article  CAS  PubMed  Google Scholar 

  15. Shariat N, Dudley EG (2014) CRISPRs: molecular signatures used for pathogen subtyping. Appl Environ Microbiol 80(2):430–439. doi:10.1128/AEM. 02790-13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Grissa I, Vergnaud G, Pourcel C (2007) CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 35:W52–57

    Article  PubMed Central  PubMed  Google Scholar 

  17. Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Dale JW, Brittain D, Cataldi AA, Cousins D, Crawford JT, Driscoll J et al (2001) Spacer oligonucleotide typing of bacteria of the Mycobacterium tuberculosis complex: recommendations for standardised nomenclature. Int J Tuberc Lung Dis 5:216–219

    CAS  PubMed  Google Scholar 

  19. Tang C, Reyes JF, Luciani F, Francis AR, Tanaka MM (2008) spolTools: online utilities for analyzing spoligotypes of the Mycobacterium tuberculosis complex. Bioinformatics 24:2414–2415

    Article  CAS  PubMed  Google Scholar 

  20. Reyes JF, Francis AR, Tanaka MM (2008) Models of deletion for visualizing bacterial variation: an application to tuberculosis spoligotypes. BMC Bioinformatics 9:496

    Article  PubMed Central  PubMed  Google Scholar 

  21. Ellson J, Gansner E, Koutsofios L, North SC, Woodhull G (2002) Graphviz—open source graph drawing tools (Mutzel P, Jünger M, Leipert S, eds.). Springer-Verlag Berlin, Heidelberg, pp 483–484

    Google Scholar 

  22. Groenheit R, Ghebremichael S, Pennhag A, Jonsson J, Hoffner S, Couvin D et al (2012) Mycobacterium tuberculosis strains potentially involved in the TB epidemic in Sweden a century ago. PLoS One 7:e46848

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Grimont PAD (2000) Taxotron package. Taxolab, Institut Pasteur, Paris

    Google Scholar 

  24. Coll F, Mallard K, Preston MD, Bentley S, Parkhill J, McNerney R et al (2012) SpolPred: rapid and accurate prediction of Mycobacterium tuberculosis spoligotypes from short genomic sequences. Bioinformatics 28:2991–2993

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Kellogg DE, Rybalkin I, Chen S, Mukhamedova N, Vlasik T, Siebert PD, Chencik A (1994) TaqStart antibody: “hot start” PCR facilitated by a neutralizing monoclonal antibody directed against Taq DNA polymerase. BioTechniques 16:1134–1137

    CAS  PubMed  Google Scholar 

  26. Molhuizen HO, Bunschoten AE, Schouls LM, van Embden JD (1998) Rapid detection and simultaneous strain differentiation of Mycobacterium tuberculosis complex bacteria by spoligotyping. Methods Mol Biol 101:381–394

    CAS  PubMed  Google Scholar 

  27. Van Der Zanden AG, Te Koppele-Vije EM, Vijaya Bhanu N, Van Soolingen D, Schouls LM (2003) Use of DNA extracts from Ziehl-Neelsen-stained slides for molecular detection of rifampin resistance and spoligotyping of Mycobacterium tuberculosis. J Clin Microbiol 41:1101–1108

    Article  Google Scholar 

  28. Lazzarini LC, Rosenfeld J, Huard RC, Hill V, Lapa e Silva JR, DeSalle R et al (2012) Mycobacterium tuberculosis spoligotypes that may derive from mixed strain infections are revealed by a novel computational approach. Infect Genet Evol 12:798–806

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Thierry Zozio, Elisabeth Streit and Julie Millet (Institut Pasteur de la Guadeloupe), Anna Vyazovaya and Olga Narvskaya (St. Petersburg Pasteur Institute) for helpful discussions. Igor Mokrousov gratefully acknowledges support from Russian Science Foundation (project 14-14-00292).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Mokrousov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Mokrousov, I., Rastogi, N. (2015). Spacer-Based Macroarrays for CRISPR Genotyping. In: Lundgren, M., Charpentier, E., Fineran, P. (eds) CRISPR. Methods in Molecular Biology, vol 1311. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2687-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2687-9_7

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2686-2

  • Online ISBN: 978-1-4939-2687-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics