Skip to main content

High-Throughput CRISPR Typing of Mycobacterium tuberculosis Complex and Salmonella enterica Serotype Typhimurium

  • Protocol
CRISPR

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1311))

Abstract

Spoligotyping was developed almost 18 years ago and still remains a popular first-lane genotyping technique to identify and subtype Mycobacterium tuberculosis complex (MTC) clinical isolates at a phylogeographic level. For other pathogens, such as Salmonella enterica, recent studies suggest that specifically designed spoligotyping techniques could be interesting for public health purposes. Spoligotyping was in its original format a reverse line-blot hybridization method using capture probes designed on “spacers” and attached to a membrane’s surface and a PCR product obtained from clustered regularly interspaced short palindromic repeats (CRISPRs). Cowan et al. and Fabre et al. were the first to propose a high-throughput Spoligotyping method based on microbeads for MTC and S. enterica serotype Typhimurium, respectively. The main advantages of the high-throughput Spoligotyping techniques we describe here are their low cost, their robustness, and the existence (at least for MTC) of very large databases that allow comparisons between spoligotypes from anywhere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cowan LS et al (2004) Transfer of a Mycobacterium tuberculosis genotyping method, spoligotyping, from a reverse line-blot hybridization, membrane-based assay to the Luminex multianalyte profiling system. J Clin Microbiol 42(1):474–477

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Fabre L et al (2012) CRISPR typing and subtyping for improved laboratory surveillance of Salmonella infections. PLoS One 7(5):e36995

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Groenen PM et al (1993) Nature of DNA polymorphism in the direct repeat cluster of Mycobacterium tuberculosis; application for strain differentiation by a novel typing method. Mol Microbiol 10(5):1057–1065

    Article  CAS  PubMed  Google Scholar 

  4. Kamerbeek J et al (1997) Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol 35(4):907–914

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Jansen R et al (2002) Identification of a novel family of sequence repeats among prokaryotes. Genomics 6(1):23–33

    CAS  Google Scholar 

  6. Makarova KS et al (2006) A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct 1:7

    Article  PubMed Central  PubMed  Google Scholar 

  7. Sorek R, Kunin V, Hugenholtz P (2008) CRISPR—a widespread system that provides acquired resistance against phages in bacteria and archaea. Nat Rev Microbiol 6(3):181–186

    Article  CAS  PubMed  Google Scholar 

  8. Makarova KS et al (2011) Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 9(6):467–477

    Article  CAS  PubMed  Google Scholar 

  9. Viswanathan P et al (2007) Regulation of dev, an operon that includes genes essential for Myxococcus xanthus development and CRISPR-associated genes and repeats. J Bacteriol 189(10):3738–3750

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Pourcel C, Salvignol G, Vergnaud G (2005) CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151(Pt 3):653–663

    Article  CAS  PubMed  Google Scholar 

  11. Mokrousov I et al (2005) Efficient discrimination within a Corynebacterium diphtheriae epidemic clonal group by a novel macroarray-based method. J Clin Microbiol 43(4):1662–1668

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Weill FX, et al. 2009 Molecular typing and subtyping of Salmonella by identification of the variable nucleotide sequences of the CRISPR loci. https://data.epo.org/gpi/EP2255011A2-MOLECULAR-TYPING-AND-SUBTYPING-OF-SALMONELLA-BY-IDENTIFICATION-OF-THE-VARIABLE-NUCLEOTIDE-SEQUENCES-OF-THE-CRISPR-LOCI

    Google Scholar 

  13. Fabre L, et al. 2010 Improving laboratory surveillance of Salmonella infections by fast typing based on CRISPR polymorphisms. IS2, International Symposium on Salmonella

    Google Scholar 

  14. Liu F et al (2011) Subtyping Salmonella enterica serovar enteritidis isolates from different sources by using sequence typing based on virulence genes and clustered regularly interspaced short palindromic repeats (CRISPRs). Appl Environ Microbiol 77(13):4520–4526

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Ginevra C et al (2012) Legionella pneumophila sequence type 1/Paris pulsotype subtyping by spoligotyping. J Clin Microbiol 50(3):696–701

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Lopez-Sanchez MJ et al (2012) The highly dynamic CRISPR1 system of Streptococcus agalactiae controls the diversity of its mobilome. Mol Microbiol 85(6):1057–1071

    Article  CAS  PubMed  Google Scholar 

  17. Hermans PWM et al (1991) Insertion element IS987 from Mycobacterium bovis BCG is located in a hot-spot integration region for insertion elements in Mycobacterium tuberculosis complex strains. Infect Immun 59:2695–2705

    PubMed Central  CAS  PubMed  Google Scholar 

  18. van Embden JDA et al (2000) Genetic variation and evolutionary origin of the direct repeat locus of Mycobacterium tuberculosis complex bacteria. J Bacteriol 182:2393–2401

    Article  PubMed Central  PubMed  Google Scholar 

  19. Filliol I et al (2003) Snapshot of moving and expanding clones of Mycobacterium tuberculosis and their global distribution assessed by spoligotyping in an international study. J Clin Microbiol 41(5):1963–1970

    Article  PubMed Central  PubMed  Google Scholar 

  20. Gagneux S et al (2006) Variable host-pathogen compatibility in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 103(8):2869–2873

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Gagneux S, Small PM (2007) Global phylogeography of Mycobacterium tuberculosis and implications for tuberculosis product development. Lancet Infect Dis 7(5):328–337

    Article  PubMed  Google Scholar 

  22. Reed MB et al (2009) Major Mycobacterium tuberculosis lineages associate with patient country of origin. J Clin Microbiol 47(4):1119–1128

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Brudey K et al (2006) Mycobacterium tuberculosis complex genetic diversity: mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics, and epidemiology. BMC Microbiol 6(6):23

    Article  PubMed Central  PubMed  Google Scholar 

  24. Dale JW et al (2001) Spacer oligonucleotide typing of Mycobacterium tuberculosis: recommendations for standardized nomenclature. Int J Tuberc Lung Dis 5:216–219

    CAS  PubMed  Google Scholar 

  25. Dunbar SA (2006) Applications of Luminex xMAP technology for rapid, high-throughput multiplexed nucleic acid detection. Clin Chim Acta 363(1–2):71–82

    Article  CAS  PubMed  Google Scholar 

  26. Zhang J et al (2010) Mycobacterium tuberculosis complex CRISPR genotyping: improving efficiency, throughput and discriminative power of “spoligotyping” with new spacers and a microbead-based hybridization assay. J Med Microbiol 59(Pt 3):285–294

    Article  PubMed  Google Scholar 

  27. Honisch C et al (2010) Replacing reverse line blot hybridization spoligotyping of the Mycobacterium tuberculosis complex. J Clin Microbiol 48(5):1520–1526

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Zhang J et al (2011) A first assessment of the genetic diversity of Mycobacterium tuberculosis complex in Cambodia. BMC Infect Dis 11(1):42

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Abadia E et al (2010) Resolving lineage assignation on Mycobacterium tuberculosis clinical isolates classified by spoligotyping with a new high-throughput 3R SNPs based method. Infect Genet Evol 10(7):1066–1074

    Article  CAS  PubMed  Google Scholar 

  30. Abadia E et al (2011) The use of microbead-based spoligotyping for Mycobacterium tuberculosis complex to evaluate the quality of the conventional method: providing guidelines for quality assurance when working on membranes. BMC Infect Dis 11:110

    Article  PubMed Central  PubMed  Google Scholar 

  31. Gomgnimbou MK et al (2012) ≪Spoligoriftyping≫ a DPO-based direct-hybridization assay for TB control on a multianalyte microbead-based hybridization system. J Clin Microbiol 50(10):3172–3179

    Article  PubMed Central  PubMed  Google Scholar 

  32. Gomgnimbou MK et al (2013) “TB-SPRINT: TUBERCULOSIS-SPOLIGO-RIFAMPIN-ISONIAZID TYPING”; an all-in-one assay technique for surveillance and control of multi-drug resistant tuberculosis on Luminex® devices. J Clin Microbiol 51(11):3527–3534

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Ioerger TR et al (2009) Genome analysis of multi- and extensively-drug-resistant tuberculosis from KwaZulu-Natal. PLoS One 4(11):e7778

    Article  PubMed Central  PubMed  Google Scholar 

  34. Schurch AC et al (2010) High resolution typing by integration of genome sequencing data in a large tuberculosis cluster. J Clin Microbiol 48(9):3403–3406

    Article  PubMed Central  PubMed  Google Scholar 

  35. Schurch AC et al (2011) Mutations in the regulatory network underlie the recent clonal expansion of a dominant subclone of the Mycobacterium tuberculosis Beijing genotype. Infect Genet Evol 11(3):587–597

    Article  PubMed  Google Scholar 

  36. Gardy JL et al (2011) Whole-genome sequencing and social-network analysis of a tuberculosis outbreak. N Engl J Med 364(8):730–739

    Article  CAS  PubMed  Google Scholar 

  37. Chen X et al (2011) Rapid detection of isoniazid, rifampin and ofloxacin resistance in Mycobacterium tuberculosis clinical isolates using high resolution melting analysis. J Clin Microbiol 49(10):3450–3457

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Lin A et al (2011) Rapid O serogroup identification of the ten most clinically relevant STECs by Luminex microbead-based suspension array. J Microbiol Methods 87(1):105–110

    Article  CAS  PubMed  Google Scholar 

  39. Bergval I et al (2012) Combined species identification, genotyping, and drug resistance detection of mycobacterium tuberculosis cultures by MLPA on a bead-based array. PLoS One 7(8):e43240

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Jian Zhang, Marie Accou-Demartin, Lucile Sontag, Saïana de Romans, Catherine Lim and Laëtitia Fabre. M. François Topin and M. Jan van Gils from Luminex BV, The Netherlands, are also acknowledged for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Sola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Sola, C., Abadia, E., Le Hello, S., Weill, FX. (2015). High-Throughput CRISPR Typing of Mycobacterium tuberculosis Complex and Salmonella enterica Serotype Typhimurium. In: Lundgren, M., Charpentier, E., Fineran, P. (eds) CRISPR. Methods in Molecular Biology, vol 1311. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2687-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2687-9_6

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2686-2

  • Online ISBN: 978-1-4939-2687-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics