Skip to main content
Book cover

CRISPR pp 233–250Cite as

Using the CRISPR-Cas System to Positively Select Mutants in Genes Essential for Its Function

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1311))

Abstract

The clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR associated proteins (Cas) comprise a prokaryotic adaptive defense system against foreign nucleic acids. This defense is mediated by Cas proteins, which are guided by sequences flanked by the repeats, called spacers, to target nucleic acids. Spacers designed against the prokaryotic self chromosome are lethal to the prokaryotic cell. This self-killing of the bacterium by its own CRISPR-Cas system can be used to positively select genes that participate in this killing, as their absence will result in viable cells. Here we describe a positive selection assay that uses this feature to identify E. coli mutants encoding an inactive CRISPR-Cas system. The procedure includes establishment of an assay that detects this self-killing, generation of transposon insertion mutants in random genes, and selection of viable mutants, suspected as required for this lethal activity. This procedure enabled us to identify a novel gene, htpG, that is required for the activity of the CRISPR-Cas system. The procedures described here can be adjusted to various organisms to identify genes required for their CRISPR-Cas activity.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Marraffini LA, Sontheimer EJ (2008) CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322(5909):1843–1845. doi:10.1126/science.1165771

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315(5819):1709–1712. doi:10.1126/science.1138140

    Article  CAS  PubMed  Google Scholar 

  3. Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Snijders AP, Dickman MJ, Makarova KS, Koonin EV, van der Oost J (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321(5891):960–964. doi:10.1126/science.1159689

    Article  CAS  PubMed  Google Scholar 

  4. Hale CR, Zhao P, Olson S, Duff MO, Graveley BR, Wells L, Terns RM, Terns MP (2009) RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 139(5):945–956. doi:10.1016/j.cell.2009.07.040

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Goren M, Yosef I, Edgar R, Qimron U (2012) The bacterial CRISPR/Cas system as analog of the mammalian adaptive immune system. RNA Biol 9(5):549–554. doi:10.4161/rna.20177

    Article  CAS  PubMed  Google Scholar 

  6. Abedon ST (2012) Bacterial ‘immunity’ against bacteriophages. Bacteriophage 2(1):50–54. doi:10.4161/bact.18609

    Article  PubMed Central  PubMed  Google Scholar 

  7. Bhaya D, Davison M, Barrangou R (2011) CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet 45:273–297. doi:10.1146/annurev-genet-110410-132430

    Article  CAS  PubMed  Google Scholar 

  8. Wiedenheft B, Sternberg SH, Doudna JA (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature 482(7385):331–338. doi:10.1038/nature10886

    Article  CAS  PubMed  Google Scholar 

  9. Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, Moineau S, Mojica FJ, Wolf YI, Yakunin AF, van der Oost J, Koonin EV (2011) Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 9(6):467–477. doi:10.1038/nrmicro2577

    Article  CAS  PubMed  Google Scholar 

  10. Pougach K, Semenova E, Bogdanova E, Datsenko KA, Djordjevic M, Wanner BL, Severinov K (2010) Transcription, processing and function of CRISPR cassettes in Escherichia coli. Mol Microbiol 77(6):1367–1379. doi:10.1111/j.1365-2958.2010.07265.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Yosef I, Goren MG, Qimron U (2012) Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli. Nucleic Acids Res 40(12):5569–5576. doi:10.1093/nar/gks216

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Deveau H, Garneau JE, Moineau S (2010) CRISPR/Cas system and its role in phage-bacteria interactions. Annu Rev Microbiol 64:475–493. doi:10.1146/annurev.micro.112408.134123

    Article  CAS  PubMed  Google Scholar 

  13. Sorek R, Kunin V, Hugenholtz P (2008) CRISPR—a widespread system that provides acquired resistance against phages in bacteria and archaea. Nat Rev Microbiol 6(3):181–186. doi:10.1038/nrmicro1793

    Article  CAS  PubMed  Google Scholar 

  14. Marraffini LA, Sontheimer EJ (2010) CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet 11(3):181–190. doi:10.1038/nrg2749

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Gratz SJ, Cummings AM, Nguyen JN, Hamm DC, Donohue LK, Harrison MM, Wildonger J, O’Connor-Giles KM (2013) Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics 194(4):1029–1035. doi:10.1534/genetics.113.152710

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Gaj T, Gersbach CA, Barbas CF III (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31(7):397–405. doi:10.1016/j.tibtech.2013.04.004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153(4):910–918. doi:10.1016/j.cell.2013.04.025

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Blackburn PR, Campbell JM, Clark KJ, Ekker SC (2013) The CRISPR system—keeping zebrafish gene targeting fresh. Zebrafish 10(1):116–118.  doi:10.1089/zeb.2013.9999

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 41(7):4336–4343. doi:10.1093/nar/gkt135

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Ramalingam S, Annaluru N, Chandrasegaran S (2013) A CRISPR way to engineer the human genome. Genome Biol 14(2):107. doi:10.1186/gb-2013-14-2-107

    Article  PubMed Central  PubMed  Google Scholar 

  21. Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31(3):233–239. doi:10.1038/nbt.2508

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823.  doi:10.1126/science.1231143

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Edgar R, Qimron U (2010) The Escherichia coli CRISPR system protects from lambda lysogenization, lysogens, and prophage induction. J Bacteriol 192(23):6291–6294. doi:10.1128/JB.00644-10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Yosef I, Goren MG, Kiro R, Edgar R, Qimron U (2011) High-temperature protein G is essential for activity of the Escherichia coli clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system. Proc Natl Acad Sci U S A 108(50):20136–20141. doi:10.1073/pnas.1113519108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Vercoe RB, Chang JT, Dy RL, Taylor C, Gristwood T, Clulow JS, Richter C, Przybilski R, Pitman AR, Fineran PC (2013) Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands. PLoS Genet 9(4):e1003454. doi:10.1371/journal.pgen.1003454

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Kitagawa M, Ara T, Arifuzzaman M, Ioka-Nakamichi T, Inamoto E, Toyonaga H, Mori H (2005) Complete set of ORF clones of Escherichia coli ASKA library (a complete set of E. coli K-12 ORF archive): unique resources for biological research. DNA Res 12(5):291–299. doi:10.1093/dnares/dsi012

    Article  CAS  PubMed  Google Scholar 

  27. Wilson K (1994) Preparation of genomic DNA from bacteria, p. 2.4. 1-2.4. 5. InIn FA Ausubel, R. Brent, RE Kingston, DD Moore, JG Seidman, JA Smith, and K. Struhl. Current protocols in molecular biology John Wiley & Sons, Inc, New York, NY

    Google Scholar 

  28. Larsen RA, Wilson MM, Guss AM, Metcalf WW (2002) Genetic analysis of pigment biosynthesis in Xanthobacter autotrophicus Py2 using a new, highly efficient transposon mutagenesis system that is functional in a wide variety of bacteria. Arch Microbiol 178(3):193–201. doi:10.1007/s00203-002-0442-2

    Article  CAS  PubMed  Google Scholar 

  29. Walker CB, Stolyar S, Chivian D, Pinel N, Gabster JA, Dehal PS, He Z, Yang ZK, Yen HC, Zhou J, Wall JD, Hazen TC, Arkin AP, Stahl DA (2009) Contribution of mobile genetic elements to Desulfovibrio vulgaris genome plasticity. Environ Microbiol 11(9):2244–2252. doi:10.1111/j.1462-2920.2009.01946.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Israel Science Foundation grant 611/10 to U.Q., and the Marie Curie International Reintegration Grant PIRG-2010-266717 to R.E.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udi Qimron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Yosef, I., Goren, M.G., Edgar, R., Qimron, U. (2015). Using the CRISPR-Cas System to Positively Select Mutants in Genes Essential for Its Function. In: Lundgren, M., Charpentier, E., Fineran, P. (eds) CRISPR. Methods in Molecular Biology, vol 1311. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2687-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2687-9_15

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2686-2

  • Online ISBN: 978-1-4939-2687-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics