Skip to main content

Spectrophotometric Assays of Major Compounds Extracted from Algae

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1308))

Abstract

This chapter describes spectrophotometric assays of major compounds extracted from microalgae and macroalgae, i.e., proteins, carbohydrates, pigments (chlorophylls, carotenoids, and phycobiliproteins) and phenolic compounds. In contrast to other specific analytical techniques, such as high pressure liquid chromatography (HPLC) or mass spectrometry (MS), commonly applied to purified extracts to reveal more detailed composition and structure of algal compound families, these assays serve as a first assessment of the global contents of extracts.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Stengel DB, Connan S, Popper ZA (2011) Algal chemodiversity and bioactivity: sources of natural variability and implications for commercial application. Biotechnol Adv 29:483–501

    Article  CAS  PubMed  Google Scholar 

  2. Connan S, Goulard F, Stiger V et al (2004) Interspecific and temporal variation in phlorotannin levels in an assemblage of brown algae. Bot Mar 47:410–416

    Article  CAS  Google Scholar 

  3. Le Lann KL, Ferret C, VanMee E et al (2012) Total phenolic, size‐fractionated phenolics and fucoxanthin content of tropical Sargassaceae (Fucales, Phaeophyceae) from the South Pacific Ocean: spatial and specific variability. Phycol Res 60:37–50

    Article  Google Scholar 

  4. Munier M, Dumay J, Morançais M et al (2013) Variation in the biochemical composition of the edible seaweed Grateloupia turuturu Yamada harvested from two sampling sites on the Brittany coast (France): the influence of storage method on the extraction of the seaweed pigment R-phycoerythrin. J Chem. doi:10.1155/2013/568548

    Google Scholar 

  5. Guihéneuf F, Stengel DB (2013) LC-PUFA-enriched oil production by microalgae: accumulation of lipid and triacylglycerols containing n-3 LC-PUFA is triggered by nitrogen limitation and inorganic carbon availability in the marine haptophyte Pavlova lutheri. Mar Drugs 11:4246–4266

    Article  PubMed Central  PubMed  Google Scholar 

  6. Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Method Enzymol 299:152–178

    Article  CAS  Google Scholar 

  7. Rausch T (1981) The estimation of micro-algal protein content and its meaning to the evaluation of algal biomass I. Comparison of methods for extracting protein. Hydrobiologia 78:237–251

    Article  CAS  Google Scholar 

  8. Barbarino E, Lourenço SO (2005) An evaluation of methods for extraction and quantification of protein from marine macro- and microalgae. J Appl Phycol 17:447–460

    Article  CAS  Google Scholar 

  9. Pruvost J, Van Vooren G, Le Gouic B et al (2011) Systematic investigation of biomass and lipid productivity by microalgae in photobioreactors for biodiesel application. Bioresource Technol 102:150–158

    Article  CAS  Google Scholar 

  10. González López CV, García MDCC, Fernández FGA et al (2010) Protein measurements of microalgal and cyanobacterial biomass. Bioresource Technol 101:7587–7591

    Article  Google Scholar 

  11. Meijer EA, Wijffels RH (1998) Development of a fast, reproductible and effective method for the extraction and quantification of proteins of micro-algae. Biotechnol Tech 12:353–358

    Article  CAS  Google Scholar 

  12. Waterborg JH (2002) The Lowry method for protein quantification. In: Walker JM (ed) The protein protocols handbook. Humana Press Inc., Totowa, NJ, pp 7–9

    Chapter  Google Scholar 

  13. Kruger NJ (2002) The Bradford method for protein quantification. In: Walker JM (ed) The protein handbook. Humana Press Inc., Totowa, NJ, pp 15–21

    Chapter  Google Scholar 

  14. Walker JM (2002) The bicinchoninic acid (BCA) assay for protein quantitation. In: Walker JM (ed) The protein protocols handbook. Humana Press Inc., Totowa, NJ, pp 11–14

    Chapter  Google Scholar 

  15. Crossman D, Clements K, Cooper G (2000) Determination of protein for studies of marine herbivory: a comparison of methods. J Exp Mar Biol Ecol 244:45–65

    Article  CAS  Google Scholar 

  16. Rondel C, Marcato-Romain C-E, Girbal-Neuhauser E (2013) Development and validation of a colorimetric assay for simultaneous quantification of neutral and uronic sugars. Water Res 47:2901–2908

    Article  CAS  PubMed  Google Scholar 

  17. Dubois M, Gilles KA, Hamilton JK et al (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  18. Dreywood R (1946) Qualitative test for carbohydrate material. Ind Eng Chem 18:499

    CAS  Google Scholar 

  19. Norikoshi R, Imanishi H, Ichimura K (2008) A simple and rapid extraction method of carbohydrates from petals or sepals of four floricultural plants for determination of their content. J Jpn Soc Hortic Sci 77:289–295

    Article  CAS  Google Scholar 

  20. Santoyo S, Plaza M, Jaime L et al (2011) Pressurized liquids as an alternative green process to extract antiviral agents from the edible seaweed Himanthalia elongata. J Appl Phycol 23:909–917

    Article  CAS  Google Scholar 

  21. Adams JMM, Ross AB, Anastasakis K et al (2011) Seasonal variation in the chemical composition of the bioenergy feedstock Laminaria digitata for thermochemical conversion. Bioresource Technol 102:226–234

    Article  CAS  Google Scholar 

  22. Laurens LM, Dempster TA, Jones HD et al (2012) Algal biomass constituent analysis: method uncertainties and investigation of the underlying measuring chemistries. Anal Chem 84:1879–1887

    Article  CAS  PubMed  Google Scholar 

  23. Deniaud-Bouët E, Kervarec N, Michel G et al (2014) Chemical and enzymatic fractionation of cell walls from Fucales: insights into the structure of the extracellular matrix of brown algae. Ann Bot. doi:10.1093/aob/mcu096

    PubMed  Google Scholar 

  24. Ragan MA, Glombitza KW (1986) Phlorotannins, brown algal polyphenols. In: Round FE, Chapman DJ (eds) Progress in phycological research. Biopress Ltd., Bristol, pp 129–241

    Google Scholar 

  25. Hur S, Lee H, Kim Y et al (2008) Sargaquinoic acid and sargachromenol, extracts of Sargassum sagamianum, induce apoptosis in HaCaT cells and mice skin: its potentiation of UVB-induced apoptosis. Eur J Pharmacol 582:1–11

    Article  CAS  PubMed  Google Scholar 

  26. de la Mare J-A, Lawson JC, Chiwakata MT et al (2012) Quinones and halogenated monoterpenes of algal origin show anti-proliferative effects against breast cancer cells in vitro. Invest New Drugs 30:2187–2200

    Article  CAS  PubMed  Google Scholar 

  27. Whitfield FB, Helidoniotis F, Shaw KJ et al (1999) Distribution of bromophenols in species of marine algae from eastern Australia. J Agric Food Chem 47:2367–2373

    Article  CAS  PubMed  Google Scholar 

  28. Phillips DW, Towers GHN (1982) Chemical ecology of red algal bromophenols. I. Temporal, interpopulational and within-thallus measurements of lanosol levels in Rhodomela larix (Turner) C. Agardh. J Exp Mar Biol Ecol 58:285–293

    Article  CAS  Google Scholar 

  29. Flodin C, Helidoniotis F, Whitfield FB (1999) Seasonal variation in bromophenol content and bromoperoxidase activity in Ulva lactuca. Phytochemistry 51:135–138

    Article  CAS  Google Scholar 

  30. Li H-B, Cheng K-W, Wong C-C et al (2007) Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chem 102:771–776

    Article  CAS  Google Scholar 

  31. Klejdus B, Kopecký J, Benešová L et al (2009) Solid-phase/supercritical-fluid extraction for liquid chromatography of phenolic compounds in freshwater microalgae and selected cyanobacterial species. J Chromatogr A 1216:763–771

    Article  CAS  PubMed  Google Scholar 

  32. Koivikko R, Loponen J, Honkanen T et al (2005) Contents of soluble, cell-wall-bound and exuded phlorotannins in the brown alga Fucus vesiculosus, with implications on their ecological functions. J Chem Ecol 31:195–212

    Article  CAS  PubMed  Google Scholar 

  33. Cerantola S, Breton F, Ar Gall E et al (2006) Co-occurence and antioxidant activities of fucol and fucophlorethol classes of polymeric phenols in Fucus spiralis. Bot Mar 49:347–351

    Article  CAS  Google Scholar 

  34. Parys S, Rosenbaum A, Kehraus S et al (2007) Evaluation of quantitative methods for the determination of polyphenols in algal extracts. J Nat Prod 70:1865–1870

    Article  CAS  PubMed  Google Scholar 

  35. Connan S, Stengel DB (2011) Impacts of ambient salinity and copper on brown algae: 2. Interactive effects on phenolic pool and assessment of metal binding capacity of phlorotannin. Aquat Toxicol 104:1–13

    Article  CAS  PubMed  Google Scholar 

  36. Lopes G, Sousa C, Silva LR et al (2012) Can phlorotannins purified extracts constitute a novel pharmacological alternative for microbial infections with associated inflammatory conditions? PLoS One 7, doi: 10.1371/journal.pone.0031145

    Google Scholar 

  37. Trigui M, Gasmi L, Zouari I et al (2013) Seasonal variation in phenolic composition, antibacterial and antioxidant activities of Ulva rigida (Chlorophyta) and assessment of antiacetylcholinesterase potential. J Appl Phycol 25:319–328

    Article  Google Scholar 

  38. Folin O, Denis W (1915) A colorimetric method for the determination of phenols (and phenol derivates) in urine. J Biol Chem 22:305–308

    CAS  Google Scholar 

  39. Hagerman AE, Butler LG (1989) Choosing appropriate methods and standards for assaying tannins. J Chem Ecol 15:1795–1810

    Article  CAS  PubMed  Google Scholar 

  40. Van Alstyne KL (1995) Comparison of three methods for quantifying brown algal polyphenolic compounds. J Chem Ecol 21:45–58

    Article  PubMed  Google Scholar 

  41. Folin O, Ciocalteu V (1927) On tyrosine and tryptophane determinations in proteins. J Biol Chem 73:627–650

    CAS  Google Scholar 

  42. Tan JBL, Lim YY (2015) Critical analysis of current methods for assessing the in vitro antioxidant and antibacterial activity of plant extracts. Food Chem 172:814–822

    Article  CAS  PubMed  Google Scholar 

  43. Toth GB, Pavia H (2001) Removal of dissolved brown algal phlorotannins using insoluble polyvinylpolypyrrolidone (PVPP). J Chem Ecol 27:1899–1910

    Article  CAS  PubMed  Google Scholar 

  44. Ribéreau-Gayon P (1972) Plant phenolics, vol 3. Oliver and Boyd, Edinburgh, UK

    Google Scholar 

  45. Butler LG, Price ML, Brotherton JE (1982) Vanillin assay for proanthocyanidins (condensed tannins): modification of the solvent for estimation of the degree of polymerization. J Agric Food Chem 30:1087–1089

    Article  CAS  Google Scholar 

  46. Stern JL, Hagerman AE, Steinberg PD et al (1996) A new assay for quantifying brown algal phlorotannins and comparisons to previous methods. J Chem Ecol 22:1273–1293

    Article  CAS  PubMed  Google Scholar 

  47. Yates JL, Peckol P (1993) Effects of nutrient availability and herbivory on polyphenolics in the seaweed Fucus vesiculosus. Ecology 74:1757–1766

    Article  Google Scholar 

  48. Jégou C, Culioli G, Kervarec N et al (2010) LC/ESI-MSn and 1H HR-MAS NMR analytical methods as useful taxonomical tools within the genus Cystoseira C. Agardh (Fucales; Phaeophyceae). Talanta 83:613–622

    Article  PubMed  Google Scholar 

  49. Sanoner P, Guyot S, Marnet N et al (1999) Polyphenol profiles of French cider apple varieties (Malus domestica sp.). J Agric Food Chem 47:4847–4853

    Article  CAS  PubMed  Google Scholar 

  50. Koivikko R, Eränen J, Loponen J et al (2008) Variation of phlorotannins among three populations of Fucus vesiculosus as revealed by HPLC and colorimetric quantification. J Chem Ecol 34:57–64

    Article  CAS  PubMed  Google Scholar 

  51. Zubia M, Fabre MS, Kerjean V et al (2009) Antioxidant and cytotoxic activities of some red algae (Rhodophyta) from Brittany coasts (France). Bot Mar 52:268–277

    Article  CAS  Google Scholar 

  52. Audibert L, Fauchon M, Blanc N et al (2010) Phenolic compounds in the brown seaweed Ascophyllum nodosum: distribution and radical-scavenging activities. Phytochem Anal 21:399–405

    Article  CAS  PubMed  Google Scholar 

  53. Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–16

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pfl 167:191–194

    CAS  Google Scholar 

  55. Humphrey GF (1979) Photosynthetic characteristics of algae grown under constant illumination and light-dark regimes. J Exp Mar Biol Ecol 40:63–70

    Article  CAS  Google Scholar 

  56. Inskeep WP, Bloom PR (1985) Extinction coefficients of chlorophyll a and b in N, N-dimethylformamide and 80 % acetone. Plant Physiol 77:483–485

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394

    Article  CAS  Google Scholar 

  58. Jeffrey SW (1997) Chlorophyll and carotenoid extinction coefficients. In: Jeffrey SW, Mantoura RFC, Wright SW (eds) Phytoplankton pigments in oceanography: guidelines to modern methods. UNESCO Publishing, Paris, pp 595–596

    Google Scholar 

  59. Ritchie RJ (2006) Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth Res 89:27–41

    Article  CAS  PubMed  Google Scholar 

  60. Ritchie RJ (2008) Universal chlorophyll equations for estimating chlorophylls a, b, c and d and total chlorophylls in natural assemblages of photosynthetic organisms using acetone, methanol, or ethanol solvents. Photosynthetica 46:115–126

    Article  CAS  Google Scholar 

  61. Strickland JDH, Parsons TR (1968) A practical handbook of seawater analysis. Bull Fish Res Bd Can vol. 167

    Google Scholar 

  62. Jeffrey SW, Welschmeyer NA (1997) Spectrophotometric and fluorometric equations in common use in oceanography. In: Jeffrey SW, Mantoura RFC, Wright SW (eds) Phytoplankton pigments in oceanography: guidelines to modern methods. UNESCO Publishing, Paris, pp 597–615

    Google Scholar 

  63. Mantoura RFC, Jeffrey SW, Llewellyn CA et al (1997) Comparison between spectrophotometric, fluorometric and HPLC methods for chlorophyll analysis. In: Jeffrey SW, Mantoura RFC, Wright SW (eds) Phytoplankton pigments in oceanography: guidelines to modern methods. UNESCO Publishing, Paris, pp 361–380

    Google Scholar 

  64. Seely GR, Duncan MJ, Vidaver WE (1972) Preparative and analytical extraction of pigments from brown algae with dimethyl sulfoxide. Mar Biol 12:184–188

    Article  CAS  Google Scholar 

  65. Stengel DB, Dring MJ (1998) Seasonal variation in the pigment content and photosynthesis of different thallus regions of Ascophyllum nodosum (Fucales, Phaeophyta) in relation to position in the canopy. Phycologia 37:259–268

    Article  Google Scholar 

  66. Jeffrey SW (1997) Application of pigment methods to oceanography. In: Jeffrey SW, Mantoura RFC, Wright SW (eds) Phytoplankton pigments in oceanography: guidelines to modern methods. UNESCO Publishing, Paris, pp 127–166

    Google Scholar 

  67. Altamirano M, Flores-Moya A, Conde F et al (2000) Growth seasonality, photosynthetic pigments, and carbon and nitrogen content in relation to environmental factors: a field study of Ulva olivascens (Ulvales, Chlorophyta). Phycologia 39:50–58

    Article  Google Scholar 

  68. Korbee N, Figueroa FL, Aguilera J (2005) Effect of light quality on the accumulation of photosynthetic pigments, proteins and mycosporine-like amino acids in the red alga Porphyra leucosticta (Bangiales, Rhodophyta). J Photochem Photobiol B 80:71–78

    Article  CAS  PubMed  Google Scholar 

  69. Lorenzen CJ (1967) Determination of chlorophyll and pheopigments: spectrophotometric equations. Limnol Oceanogr 12:343–346

    Article  CAS  Google Scholar 

  70. Pruvost J, Van Vooren G, Cogne G et al (2009) Investigation of biomass and lipids production with Neochloris oleoabundans in photobioreactor. Bioresource Technol 100:5988–5995

    Article  CAS  Google Scholar 

  71. Munier M, Jubeau S, Wijaya A et al (2014) Physicochemical factors affecting the stability of two pigments: R-phycoerythrin of Grateloupia turuturu and B-phycoerythrin of Porphyridium cruentum. Food Chem 150:400–407

    Article  CAS  PubMed  Google Scholar 

  72. Mishra SK, Shrivastav A, Mishra S (2011) Preparation of highly purified C-phycoerythrin from marine cyanobacterium Pseudanabaena sp. Protein Expres Purif 80:234–238

    Article  CAS  Google Scholar 

  73. Beer S, Eshel A (1985) Determining phycoerythrin and phycocyanin concentrations in aqueous crude extracts of red algae. Aust J Mar Fresh Res 36:785–792

    Article  CAS  Google Scholar 

  74. Lawrenz E, Fedewa EJ, Richardson TL (2011) Extraction protocols for the quantification of phycobilins in aqueous phytoplankton extracts. J Appl Phycol 23:865–871

    Article  Google Scholar 

  75. Denis C, Morançais M, Li M et al (2010) Study of the chemical composition of edible red macroalgae Grateloupia turuturu from Brittany (France). Food Chem 119:913–917

    Article  CAS  Google Scholar 

  76. Chopin T, Yarish C, Wilkes R et al (1999) Developing Porphyra/salmon integrated aquaculture for bioremediation and diversification of the aquaculture industry. J Appl Phycol 11:463–472

    Article  Google Scholar 

  77. Sampath-Wiley P, Neefus CD (2007) An improved method for estimating R-phycoerythrin and R-phycocyanin contents from crude aqueous extracts of Porphyra (Bangiales, Rhodophyta). J Appl Phycol 19:123–129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Senthilkumar N, Suresh V, Thangam R et al (2013) Isolation and characterization of macromolecular protein R-phycoerythrin from Portieria hornemannii. Int J Biol Macromol 55:150–160

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Solène Connan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Connan, S. (2015). Spectrophotometric Assays of Major Compounds Extracted from Algae. In: Stengel, D., Connan, S. (eds) Natural Products From Marine Algae. Methods in Molecular Biology, vol 1308. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2684-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2684-8_3

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2683-1

  • Online ISBN: 978-1-4939-2684-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics