Skip to main content

Plant Protein Kinase Substrates Identification Using Protein Microarrays

  • Protocol
Plant Phosphoproteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1306))

Abstract

Protein kinases regulate signaling pathways by phosphorylating their targets. They play critical roles in plant signaling networks. Although many important protein kinases have been identified in plants, their substrates are largely unknown. We have developed and produced plant protein microarrays with more than 15,000 purified plant proteins. Here, we describe a detailed protocol to use these microarrays to identify plant protein kinase substrates via in vitro phosphorylation assays on these arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977–983

    Article  CAS  PubMed  Google Scholar 

  2. Jonak C, Okresz L, Bogre L, Hirt H (2002) Complexity, cross talk and integration of plant MAP kinase signalling. Curr Opin Plant Biol 5:415–424

    Article  CAS  PubMed  Google Scholar 

  3. Wang HC, Ngwenyama N, Liu YD, Walker JC, Zhang SQ (2007) Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis. Plant Cell 19:63–73

    Article  PubMed Central  PubMed  Google Scholar 

  4. Nam KH, Li JM (2002) BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell 110:203–212

    Article  CAS  PubMed  Google Scholar 

  5. Jeong S, Trotochaud AE, Clark SE (1999) The Arabidopsis CLAVATA2 gene encodes a receptor-like protein required for the stability of the CLAVATA1 receptor-like kinase. Plant Cell 11:1925–1933

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Gomez-Gomez L, Boller T (2000) FLS2: An LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5:1003–1011

    Article  CAS  PubMed  Google Scholar 

  7. Popescu SC, Popescu GV, Bachan S, Zhang Z, Gerstein M, Snyder M, Dinesh-Kumar SP (2009) MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays. Genes Develop 23:80–92

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Shiu SH, Bleecker AB (2003) Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol 132:530–543

    Article  CAS  PubMed  Google Scholar 

  9. Popescu SC, Popescu GV, Bachan S, Zhang Z, Seay M, Gerstein M, Snyder M, Dinesh-Kumar SP (2007) Differential binding of calmodulin-related proteins to their targets revealed through high-density Arabidopsis protein microarrays. Proc Natl Acad Sci U S A 104:4730–4735

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Lee HY, Bowen CH, Popescu GV, Kang HG, Kato N, Ma S, Dinesh-Kumar S, Snyder M, Popescu SC (2011) Arabidopsis RTNLB1 and RTNLB2 reticulon-like proteins regulate intracellular trafficking and activity of the FLS2 immune receptor. Plant Cell 23:3374–3391

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Rubio V, Shen Y, Saijo Y, Liu Y, Gusmaroli G, Dinesh-Kumar SP, Deng XW (2005) An alternative tandem affinity purification strategy applied to Arabidopsis protein complex isolation. Plant J 41:767–778

    Article  CAS  PubMed  Google Scholar 

  12. Dong Y, Burch-Smith TM, Liu Y, Mamillapalli P, Dinesh-Kumar SP (2007) A ligation-independent cloning tobacco rattle virus vector for high-throughput virus-induced gene silencing identifies roles for NbMADS4-1 and -2 in floral development. Plant Physiol 145:1161–1170

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Sheikholeslam SN, Weeks DP (1987) Acetosyringone promotes high efficiency transformation of Arabidopsis thaliana explants by Agrobacterium tumefaciens. Plant Mol Biol 8:291–298

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The protein microarray work in SPD-K lab was supported by National Science Foundation grants DBI-0723722 and DBI-1042344 and currently by UC Davis funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savithramma P. Dinesh-Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ma, S., Dinesh-Kumar, S.P. (2015). Plant Protein Kinase Substrates Identification Using Protein Microarrays. In: Schulze, W. (eds) Plant Phosphoproteomics. Methods in Molecular Biology, vol 1306. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2648-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2648-0_12

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2647-3

  • Online ISBN: 978-1-4939-2648-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics