Skip to main content

Analysis of Plant Mitochondrial Function Using Fluorescent Protein Sensors

  • Protocol
Plant Mitochondria

Abstract

Mitochondrial physiology sets the basis for function of the organelle and vice versa. While a limited range of in vivo parameters, such as oxygen consumption, has been classically accessible for measurement, a growing collection of fluorescent protein sensors can now give insights into the physiology of plant mitochondria. Nevertheless, the meaningful application of these sensors in mitochondria is technically challenging and requires rigorous experimental standards. Here we exemplify the application of three genetically encoded sensors to monitor glutathione redox potential, pH, and calcium in the matrix of mitochondria in intact plants. We describe current methods for quantitative imaging and analysis in living root tips by confocal microscopy and discuss methodological limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baradaran R, Berrisford JM, Minhas GS et al (2013) Crystal structure of the entire respiratory complex I. Nature 494:443–448

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Schwarzländer M, Finkemeier I (2013) Mitochondrial energy and redox signaling in plants. Antioxid Redox Signal 18:2122–2144

    Article  PubMed Central  PubMed  Google Scholar 

  3. Schwarzländer M, Fricker MD, Sweetlove LJ (2009) Monitoring the in vivo redox state of plant mitochondria: effect of respiratory inhibitors, abiotic stress and assessment of recovery from oxidative challenge. Biochim Biophys Acta 1787:468–475

    Article  PubMed  Google Scholar 

  4. Poburko D, Santo-Domingo J, Demaurex N (2011) Dynamic regulation of the mitochondrial proton gradient during cytosolic calcium elevations. J Biol Chem 286:11672–11684

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Loro G, Drago I, Pozzan T et al (2012) Targeting of Cameleons to various subcellular compartments reveals a strict cytoplasmic/mitochondrial Ca2+ handling relationship in plant cells. Plant J 71:1–13

    Article  CAS  PubMed  Google Scholar 

  6. Imamura H, Nhat KP, Togawa H et al (2009) Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators. Proc Natl Acad Sci U S A 106:15651–15656

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Albrecht SC, Sobotta MC, Bausewein D et al (2014) Redesign of genetically encoded biosensors for monitoring mitochondrial redox status in a broad range of model eukaryotes. J Biomol Screen 19:379–386

    Article  CAS  PubMed  Google Scholar 

  8. Schwarzländer M, Logan DC, Fricker MD et al (2011) The circularly permuted yellow fluorescent protein cpYFP that has been used as a superoxide probe is highly responsive to pH but not superoxide in mitochondria: implications for the existence of superoxide ‘flashes’. Biochem J 437:381–387

    Article  PubMed  Google Scholar 

  9. Behera S, Krebs M, Loro G et al (2013) Ca2+ imaging in plants using genetically encoded Yellow Cameleon Ca2+ indicators. Cold Spring Harb Protoc 2013:700–703

    PubMed  Google Scholar 

  10. Schwarzländer M, Logan DC, Johnston IG et al (2012) Pulsing of membrane potential in individual mitochondria: a stress-induced mechanism to regulate respiratory bioenergetics in Arabidopsis. Plant Cell 24:1188–1201

    Article  PubMed Central  PubMed  Google Scholar 

  11. Loro G, Costa A (2013) Imaging of mitochondrial and nuclear Ca2+ dynamics in Arabidopsis roots. Cold Spring Harb Protoc 2013:781–785

    Article  PubMed  Google Scholar 

  12. Costa A, Candeo A, Fieramonti L et al (2013) Calcium dynamics in root cells of Arabidopsis thaliana visualized with selective plane illumination microscopy. PLoS One 8:e75646

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Schwarzländer M, Fricker MD, Müller C et al (2008) Confocal imaging of glutathione redox potential in living plant cells. J Microsc 231:299–316

    Article  PubMed  Google Scholar 

  14. Logan DC, Knight MR (2003) Mitochondrial and cytosolic calcium dynamics are differentially regulated in plants. Plant Physiol 133:21–24

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Gutscher M, Pauleau AL, Marty L et al (2008) Real-time imaging of the intracellular glutathione redox potential. Nat Methods 5:553–559

    Article  CAS  PubMed  Google Scholar 

  16. Logan DC, Leaver CJ (2000) Mitochondria-targeted GFP highlights the heterogeneity of mitochondrial shape, size and movement within living plant cells. J Exp Bot 51:865–871

    Article  CAS  PubMed  Google Scholar 

  17. Fricker MD, May M, Meyer AJ et al (2000) Measurement of glutathione levels in intact roots of Arabidopsis. J Microsc 198:162–173

    Article  CAS  PubMed  Google Scholar 

  18. Zechmann B, Mauch F, Sticher L et al (2008) Subcellular immunocytochemical analysis detects the highest concentrations of glutathione in mitochondria and not in plastids. J Exp Bot 59:4017–4027

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Marty L, Siala W, Schwarzländer M et al (2009) The NADPH-dependent thioredoxin system constitutes a functional backup for cytosolic glutathione reductase in Arabidopsis. Proc Natl Acad Sci U S A 106:9109–9114

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Dooley CT, Dore TM, Hanson GT et al (2004) Imaging dynamic redox changes in mammalian cells with green fluorescent protein indicators. J Biol Chem 279:22284–22293

    Article  CAS  PubMed  Google Scholar 

  21. Ostergaard H, Tachibana C, Winther JR (2004) Monitoring disulfide bond formation in the eukaryotic cytosol. J Cell Biol 166:337–345

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Meyer AJ, Brach T, Marty L et al (2007) Redox-sensitive GFP in Arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer. Plant J 52:973–986

    Article  CAS  PubMed  Google Scholar 

  23. Nagai T, Sawano A, Park ES et al (2001) Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proc Natl Acad Sci U S A 98:3197–3202

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Wang W, Fang H, Groom L et al (2008) Superoxide flashes in single mitochondria. Cell 134:279–290

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Nagai T, Yamada S, Tominaga T et al (2004) Expanded dynamic range of fluorescent indicators for Ca2+ by circularly permuted yellow fluorescent proteins. Proc Natl Acad Sci U S A 101:10554–10559

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Filippin L, Abad MC, Gastaldello S et al (2005) Improved strategies for the delivery of GFP-based Ca2+ sensors into the mitochondrial matrix. Cell Calcium 37:129–136

    Article  CAS  PubMed  Google Scholar 

  27. Schwarzländer M, Wagner S, Ermakova YG et al (2014) The ‘mitoflash’ probe cpYFP does not respond to superoxide. Nature 514(7523):E12–E14. doi:10.1038/nature13858

Download references

Acknowledgement

M.S. was supported by the Deutsche Forschungsgemeinschaft through the Emmy Noether Programme (SCHW1719/1-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Schwarzländer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wagner, S. et al. (2015). Analysis of Plant Mitochondrial Function Using Fluorescent Protein Sensors. In: Whelan, J., Murcha, M. (eds) Plant Mitochondria. Methods in Molecular Biology, vol 1305. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2639-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2639-8_17

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2638-1

  • Online ISBN: 978-1-4939-2639-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics