Skip to main content

Assessment of Respiration in Isolated Plant Mitochondria Using Clark-Type Electrodes

  • Protocol
Plant Mitochondria

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1305))

Abstract

Mitochondrial respiration involves two key gas exchanges, the consumption of oxygen and the release of carbon dioxide. The ability to measure the consumption of oxygen via Clark-type electrodes has been one of the key techniques for advancing our knowledge of mitochondrial function in whole organisms, tissue samples, cells, and isolated subcellular fractions. In plants, oxygen electrode analyses provided the first evidence for some of the unique respiratory properties of plant mitochondria. This chapter briefs the principles of respiration and oxidative phosphorylation, how oxygen consumption measurements can be used to assess the quality of isolated mitochondrial preparations, and how these measurements can answer important questions in plant biochemistry and physiology. Finally, it presents instructions on assembling the oxygen electrode apparatus and how to conduct various assays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Severinghaus JW, Astrup PB (1986) History of blood gas analysis. IV. Leland Clark’s oxygen electrode. J Clin Monit 2:125–139

    Article  CAS  PubMed  Google Scholar 

  2. Truesdale GA, Downing AL (1954) Solubility of oxygen in water. Nature 173:1236

    Article  CAS  Google Scholar 

  3. Clark LC, Wolf R, Granger D et al (1953) Continuous recording of blood oxygen tensions by polarography. J Appl Physiol 6:189–193

    CAS  PubMed  Google Scholar 

  4. Sweetlove LJ, Fernie AR (2013) The spatial organization of metabolism within the plant cell. Annu Rev Plant Biol 64:723–746

    Article  CAS  PubMed  Google Scholar 

  5. Day DA, Neuburger M, Douce R (1985) Biochemical-characterization of chlorophyll-free mitochondria from pea leaves. Aust J Plant Physiol 12:219–228

    Article  CAS  Google Scholar 

  6. Lyons JM, Raison JK (1970) Oxidative activity of mitochondria isolated from plant tissues sensitive and resistant to chilling injury. Plant Physiol 45:386–389

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Noguchi K, Taylor NL, Millar AH et al (2005) Response of mitochondria to light intensity in the leaves of sun and shade species. Plant Cell Environ 28:760–771

    Article  CAS  Google Scholar 

  8. Vassileva V, Simova-Stoilova L, Demirevska K et al (2009) Variety-specific response of wheat (Triticum aestivum L.) leaf mitochondria to drought stress. J Plant Res 122:445–454

    Article  CAS  PubMed  Google Scholar 

  9. Jacoby RP, Millar AH, Taylor NL (2013) Investigating the role of respiration in plant salinity tolerance by analyzing mitochondrial proteomes from wheat and a salinity-tolerant Amphiploid (wheat x Lophopyrum elongatum). J Proteome Res 12:4807–4829

    Article  CAS  PubMed  Google Scholar 

  10. Meyer EH, Tomaz T, Carroll AJ et al (2009) Remodeled respiration in ndufs4 with low phosphorylation efficiency suppresses Arabidopsis germination and growth and alters control of metabolism at night. Plant Physiol 151:603–619

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Gehl B, Lee CP, Bota P et al (2014) An Arabidopsis stomatin-like protein affects mitochondrial respiratory supercomplex organization. Plant Physiol 164:1389–1400

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Smith C, Barthet M, Melino V et al (2011) Alterations in the mitochondrial alternative NAD(P)H dehydrogenase NDB4 lead to changes in mitochondrial electron transport chain composition, plant growth and response to oxidative stress. Plant Cell Physiol 52:1222–1237

    Article  CAS  PubMed  Google Scholar 

  13. Douce R, Neuburger M (1989) The uniqueness of plant mitochondria. Annu Rev Plant Physiol Plant Mol Biol 40:371–414

    Article  CAS  Google Scholar 

  14. Bendall DS, Bonner WD (1971) Cyanide-insensitive respiration in plant mitochondria. Plant Physiol 47:236–245

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Moller IM, Palmer JM (1982) Direct evidence for the presence of a rotenone-resistant NADH dehydrogenase on the inner surface of the inner membrane of plant-mitochondria. Physiol Plant 54:267–274

    Article  Google Scholar 

  16. Dry IB, Day DA, Wiskich JT (1983) Preferential oxidation of glycine by the respiratory-chain of pea leaf mitochondria. FEBS Lett 158:154–158

    Article  CAS  Google Scholar 

  17. Taylor NL, Heazlewood JL, Day DA et al (2004) Lipoic acid-dependent oxidative catabolism of alpha-keto acids in mitochondria provides evidence for branched-chain amino acid catabolism in Arabidopsis. Plant Physiol 134:838–848

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Shugaev AG, Shugaeva N, Vyskrebentseva EI (2005) Effect of KCl medium on malate oxidation in mitochondria of sugar beet taproot. Russ J Plant Physiol 52:616–622

    Article  CAS  Google Scholar 

  19. Kearns A, Whelan J, Young S et al (1992) Tissue-specific expression of the alternative oxidase in soybean and siratro. Plant Physiol 99:712–717

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Vanlerberghe GC, McIntosh L (1992) Lower growth temperature increases alternative pathway capacity and alternative oxidase protein in tobacco. Plant Physiol 100:115–119

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Svensson AS, Johansson FI, Moller IM et al (2002) Cold stress decreases the capacity for respiratory NADH oxidation in potato leaves. FEBS Lett 517:79–82

    Article  CAS  PubMed  Google Scholar 

  22. Millar AH, Wiskich JT, Whelan J et al (1993) Organic-acid activation of the alternative oxidase of plant-mitochondria. FEBS Lett 329:259–262

    Article  CAS  PubMed  Google Scholar 

  23. Umbach AL, Siedow JN (1993) Covalent and noncovalent dimmers of the cyanide-resistant alternative oxidase protein in higher-plant mitochondria and their relationship to enzyme-activity. Plant Physiol 103:845–854

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Moller IM, Palmer JM (1981) Charge screening by cations affects the conformation of the mitochondrial inner membrane. A study of exogenous MAD(P)H oxidation in plant mitochondria. Biochem J 195:583–588

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Schonbaum GR, Bonner WD, Storey BT et al (1971) Specific inhibition of cyanide-insensitive respiratory pathway in plant mitochondria by hydroxamic acids. Plant Physiol 47:124–128

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Tomlinson PF, Moreland DE (1975) Cyanide-resistant respiration of sweet potato mitochondria. Plant Physiol 55:365–369

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Brunton CJ, Palmer JM (1973) Pathways for the oxidation of malate and reduced pyridine nucleotide by wheat mitochondria. Eur J Biochem 39:283–291

    Article  CAS  PubMed  Google Scholar 

  28. Diolez P, Moreau F (1983) Effect of Bovine Serum Albumin on membrane potential in plant mitochondria. Physiol Plant 59:177–182

    Article  CAS  Google Scholar 

  29. Ducet G (1979) Influence of Bovine Serum Albumin on the proton conductance of potato mitochondria membranes. Planta 147:122–126

    Article  CAS  PubMed  Google Scholar 

  30. Flowers TJ (1974) Salt tolerance in Suaeda-maritima (L) Dum - comparison of mitochondria isolated from green tissues of Suaeda and Pisum. J Exp Bot 25:101–110

    Article  CAS  Google Scholar 

  31. Campbell LC, Raison JK, Brady CJ (1976) Response of plant mitochondria to media of high solute content. J Bioenerg Biomembr 8:121–129

    Article  CAS  PubMed  Google Scholar 

  32. Krab K, Wagner MJ, Wagner AM et al (2000) Identification of the site where the electron transfer chain of plant mitochondria is stimulated by electrostatic charge screening. Eur J Biochem 267:869–876

    Article  CAS  PubMed  Google Scholar 

  33. Atkin OK, Zhang QS, Wiskich JT (2002) Effect of temperature on rates of alternative and cytochrome pathway respiration and their relationship with the redox poise of the quinone pool. Plant Physiol 128:212–222

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Estabrook RW (1967) Mitochondrial respiratory control and the polarographic measurement of ADP:O ratios. In: Estabrook RW, Pullman ME (eds) Methods in enzymology, vol 10. Academic, New York, NY, pp 41–47

    Google Scholar 

  35. Chance B, Williams GR (1955) Respiratory enzymes in oxidative phosphorylation 3. The steady state. J Bio Chem 217:409–427

    CAS  Google Scholar 

  36. Menz RI, Griffith M, Day DA et al (1992) Matrix NADH dehydrogenases of plant mitochondria and sites of quinone reduction by complex I. Eur J Biochem 208:481–485

    Article  CAS  PubMed  Google Scholar 

  37. Zhang Q, Wiskich JT (1995) Activation of glycine decarboxylase in pea leaf mitochondria by ATP. Arch Biochem Biophys 320:250–256

    Article  CAS  PubMed  Google Scholar 

  38. Wiskich JT, Bryce JH, Day DA et al (1990) Evidence for metabolic domains within the matrix compartment of pea leaf mitochondria: implications for photorespiratory metabolism. Plant Physiol 93:611–616

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Hinkle PC (2005) P/O ratios of mitochondrial oxidative phosphorylation. Biochim Biophys Acta 1706:1–11

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Peter Rank (Rank Brothers Limited) for granting permission to use Fig. 2. This work is supported by the Australian Research Council Centre of Excellence in Plant Energy Biology and NLT and AHM as Australian Research Council Future Fellows.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas L. Taylor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Jacoby, R.P., Millar, A.H., Taylor, N.L. (2015). Assessment of Respiration in Isolated Plant Mitochondria Using Clark-Type Electrodes. In: Whelan, J., Murcha, M. (eds) Plant Mitochondria. Methods in Molecular Biology, vol 1305. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2639-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2639-8_12

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2638-1

  • Online ISBN: 978-1-4939-2639-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics