Skip to main content

Analysis of Type II NAD(P)H Dehydrogenases

  • Protocol
Plant Mitochondria

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1305))

Abstract

Plant mitochondria contain at least four type II NAD(P)H dehydrogenases that link NAD(P)H oxidation to the inner membrane electron transport chain and bypass proton pumping at Complex I, hence ATP synthesis. These activities have been found in mitochondria isolated from all plant species analyzed to date. In this chapter, methods are presented to analyze the expression of genes encoding these dehydrogenases and to detect protein levels in mitochondria isolated from Arabidopsis (Arabidopsis thaliana). In addition, methods and assay conditions are presented to detect the activity of each of these four type II NAD(P)H dehydrogenases in isolated plant mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clifton R, Lister R, Parker KL, Sappl PG, Elhafez D, Millar AH et al (2005) Stress-induced co-expression of alternative respiratory chain components in Arabidopsis thaliana. Plant Mol Biol 58:193–212

    Article  CAS  PubMed  Google Scholar 

  2. Smith C, Barthet M, Melino V, Smith P, Day D, Soole K (2011) Alterations in the mitochondrial alternative NAD(P)H Dehydrogenase NDB4 lead to changes in mitochondrial electron transport chain composition, plant growth and response to oxidative stress. Plant Cell Physiol 52:1222–1237

    Article  CAS  PubMed  Google Scholar 

  3. Liu Y-J, Norberg FEB, Szilagyi A, De Paepe R, Akerlund H-E, Allan G, Rasmusson AG (2008) The mitochondrial external NADPH dehydrogenase modulates the leaf NADPH/NADP+ ratio in transgenic Nicotiana sylvestris. Plant Cell Physiol 49(2):251–263

    Article  CAS  PubMed  Google Scholar 

  4. Liu Y-J, Nunes-Nesi A, Wallstrom SV, Lager I, Michalecka AM, Norberg FEB, Widell S, Fredlund KM, Fernie AR, Rasmusson AG (2009) A redox-mediated modulation of stem bolting in transgenic Nicotiana sylvestris differentially expressing the external mitochondrial NADPH dehydrogenase. Plant Physiol 150:1248–1259

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Finnegan P, Soole KL, Umbach AL (2004) Alternative mitochondrial electron transport proteins in higher plants. In: Day DA, Millar AH, Whelan J (eds) Plant mitochondria: from genome to function - advances in photosynthesis and respiration. Springer, New York, NY, pp 163–230

    Chapter  Google Scholar 

  6. Rasmusson AG, Soole KL, Elthon TE (2004) Alternative NAD(P)H dehydrogenases of plant mitochondria. Annu Rev Plant Biol 55:23–39

    Article  CAS  PubMed  Google Scholar 

  7. Kumar R, Wallis JG, Skidmore C, Browse J (2006) A mutation in Arabidopsis cytochrome b5 reductase identified by high-throughput screening differentially affects hydroxylation and desaturation. Plant J 48:920–932

    Article  CAS  PubMed  Google Scholar 

  8. Duncan O, Taylor NL, Carrie C, Eubel H, Kubiszewski-Jakubiak S, Zhang B, Narsai N, Millar AH, Whelan J (2011) Multiple lines of evidence localize signaling, morphology, and lipid biosynthesis machinery to the mitochondrial outer membrane of Arabidopsis. Plant Physiol 157:1093–1113

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Soole KL, Turpin D, Wiskich JT (1997) Inducement of external (DA)-NAD(P)H oxidation in beet mitochondria. Plant Physiol 114(3S):1017

    Google Scholar 

  10. Melo AMP, Roberts TH, Møller IM (1996) Evidence for the presence of two rotenone-insensitive NAD(P)H dehydrogenases on the inner surface of the inner membrane of potato tuber mitochondria. Biochim Biophys Acta 1276:133–139

    Article  Google Scholar 

  11. Menz RI, Day DA (1996) Identification and characterization of an inducible NAD(P)H dehydrogenase from red beetroot mitochondria. Plant Physiol 112(2):607–613

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Menz RI, Day DA (1996) Purification and characterization of a 43-kDa rotenone-insensitive NADH dehydrogenase from plant mitochondria. J Biol Chem 271:23117–23120

    Article  CAS  PubMed  Google Scholar 

  13. Luethy MH, Thelen JJ, Knudten AF, Elthon TE (1995) Purification, characterization, and submitochondrial localization of a 58-kilodalton NAD(P)H dehydrogenase. Plant Physiol 107:443–450

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Geisler DA, Broselid C, Hederstedt L, Rasmusson AG (2007) Ca2+-binding and Ca2+-independent respiratory NADH and NADPH dehydrogenases of Arabidopsis thaliana. J Biol Chem 282:28455–28464

    Article  CAS  PubMed  Google Scholar 

  15. Elhafez D, Murcha MW, Clifton R, Soole KL, Day DA, Whelan J (2006) Characterization of mitochondrial alternative NAD(P)H dehydrogenases in Arabidopsis: intraorganelle location and expression. Plant Cell Physiol 47:43–54

    Article  CAS  PubMed  Google Scholar 

  16. Moore CS, Cook-Johnson RJ, Rudhe C, Whelan J, Day DA, Wiskich JT et al (2003) Identification of AtNDI1, an internal non-phosphorylating NAD(P)H dehydrogenase in Arabidopsis mitochondria. Plant Physiol 133:1968–1978

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Carrie C, Murcha MW, Kuehn K, Duncan O, Barthet M, Smith PM et al (2008) Type II NAD(P)H dehydrogenases are targeted to mitochondria and chloroplasts or peroxisomes in Arabidopsis thaliana. FEBS Lett 582:3073–3079

    Article  CAS  PubMed  Google Scholar 

  18. Xu L, Law SR, Murcha MW, Whelan J, Carrie C (2013) The dual targeting ability of type II NAD(P)H dehydrogenases arose early in land plant evolution. BMC Plant Biol 13:100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Michalecka AM, Svensson AS, Johansson FI, Agius SC, Johanson U, Brennicke A, Binder S, Rasmusson AG (2003) Arabidopsis genes encoding mitochondrial type II NAD(P)H dehydrogenases have different evolutionary origin and show distinct responses to light. Plant Physiol 133:642–652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Robinson SA, Yakir D, Ribas-Carbo M, Giles L, Osmond CB, Siedow JN, Berry JA (1992) Measurements of the engagement of cyanide-resistant respiration in the crassulacean acid metabolism plant Kalanchoe daigremontiana with the use of on-line oxygen isotope discrimination. Plant Physiol 100:1087–1091

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Day DA, Neuberger M, Douce R (1985) Biochemical characterisation of chlorophyll-free mitochondria form pea leaves. Aust J Plant Physiol 12(2):219–228

    Article  CAS  Google Scholar 

  22. Smith CA, Melino VJ, Sweetman C, Soole KL (2009) Manipulation of alternative oxidase can influence salt tolerance in Arabidopsis thaliana. Physiol Plant 137:459–472

    Article  CAS  PubMed  Google Scholar 

  23. Rasmusson AG, Møller IM (1991) NAD(P)H dehydrogenases on the inner surface of the inner mitochondrial membrane studied using inside-out submitochondrial particles. Physiol Plant 83:357–365

    Article  CAS  Google Scholar 

  24. Gostimskaya IS, Grivennikova VG, Zharova TV, Bakeeva LE, Vinogradov AD (2003) In situ assay of the intramitochondrial enzymes: use of alamethicin for permeabilization of mitochondria. Anal Biochem 313:46–52

    Article  CAS  PubMed  Google Scholar 

  25. Johansson FI, Michalecka AM, Moller IM, Rasmusson AG (2004) Oxidation and reduction of pyridine nucleotides in alamethicin permeabilized plant mitochondria. Biochem J 380:193–202

    Article  PubMed Central  PubMed  Google Scholar 

  26. Hong H, Nose A (2012) Characteristics of external and internal NAD(P)H dehydrogenases in Hoya carnosa mitochondria. J Bioenerg Biomembr 44:655–664

    Article  CAS  PubMed  Google Scholar 

  27. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  28. Møller IM, Palmer JM (1981) Charge screening by cations affects the conformation of the mitochondrial inner membrane. A study of exogenous MAD(P)H oxidation in plant mitochondria. Biochem J 195:583–588

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathleen L. Soole .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Soole, K.L., Smith, C.A. (2015). Analysis of Type II NAD(P)H Dehydrogenases. In: Whelan, J., Murcha, M. (eds) Plant Mitochondria. Methods in Molecular Biology, vol 1305. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2639-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2639-8_11

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2638-1

  • Online ISBN: 978-1-4939-2639-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics