Skip to main content

A Practical Guide for Exploring Opportunities of Repurposing Drugs for CNS Diseases in Systems Biology

  • Protocol
Systems Biology of Alzheimer's Disease

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1303))

Abstract

Systems biology has shown its potential in facilitating pathway-focused therapy development for central nervous system (CNS) diseases. An integrated network can be utilized to explore the multiple disease mechanisms and to discover repositioning opportunities. This review covers current therapeutic gaps for CNS diseases and the role of systems biology in pharmaceutical industry. We conclude with a Multiple Level Network Modeling (MLNM) example to illustrate the great potential of systems biology for CNS diseases. The system focuses on the benefit and practical applications in pathway centric therapy and drug repositioning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang Y, Adelstein SJ, Kassis AI (2009) Target discovery from data mining approaches. Drug Discov Today 14:147–154

    Article  PubMed  Google Scholar 

  2. Kola I, Landis J (2004) Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 3:711–715

    Article  CAS  PubMed  Google Scholar 

  3. Azmi AS, Wang Z, Philip PA et al (2010) Proof of concept: network and systems biology approaches aid in the discovery of potent anticancer drug combinations. Mol Cancer Ther 9:3137–3144

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Stein A, Pache RA, Bernado P et al (2009) Dynamic interactions of proteins in complex networks: a more structured view. FEBS J 276:5390–5405

    Article  CAS  PubMed  Google Scholar 

  5. Li Y, Agarwal P (2009) A pathway-based view of human diseases and disease relationships. PLoS One 4:e4346

    Article  PubMed Central  PubMed  Google Scholar 

  6. Goh KI, Cusick ME, Valle D et al (2007) The human disease network. Proc Natl Acad Sci U S A 104:8685–8690

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Loscalzo J, Kohane I, Barabasi AL (2007) Human disease classification in the postgenomic era: a complex systems approach to human pathobiology. Mol Syst Biol 3:124

    Article  PubMed Central  PubMed  Google Scholar 

  8. Hu G, Agarwal P (2009) Human disease-drug network based on genomic expression profiles. PLoS One 4:e6536

    Article  PubMed Central  PubMed  Google Scholar 

  9. Stegmaier P, Krull M, Voss N et al (2010) Molecular mechanistic associations of human diseases. BMC Syst Biol 4:124

    Article  PubMed Central  PubMed  Google Scholar 

  10. Vidal M, Cusick ME, Barabasi AL (2011) Interactome networks and human disease. Cell 144:986–998

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Hidalgo CA, Blumm N, Barabasi AL, Christakis NA (2009) A dynamic network approach for the study of human phenotypes. PLoS Comput Biol 5:e1000353

    Article  PubMed Central  PubMed  Google Scholar 

  12. Arrell DK, Terzic A (2010) Network systems biology for drug discovery. Clin Pharmacol Ther 88:120–125

    Article  CAS  PubMed  Google Scholar 

  13. Finkbeiner S (2010) Bridging the valley of death of therapeutics for neurodegeneration. Nat Med 16:1227–1232

    Article  CAS  PubMed  Google Scholar 

  14. Flordellis CS, Manolis AS, Paris H, Karabinis A (2006) Rethinking target discovery in polygenic diseases. Curr Top Med Chem 6:1791–1798

    Article  CAS  PubMed  Google Scholar 

  15. Brunden KR, Trojanowski JQ, Lee VM (2009) Advances in tau-focused drug discovery for Alzheimer’s disease and related tauopathies. Nat Rev Drug Discov 8:783–793

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Decision Resources (2010) Target product profiles 2009: physician insights on key attributes: Parkinson’s disease (report). Chapter 1. Etiology and pathophysiology. Decision Resources Inc http://decisionresources.com/Products-and-Services/;  http://www.businesswire.com/news/home/20100311005839/en/Research-Markets-Target-Product-Profiles-2009-Physician#.U77e0rFHSf0

  17. Simunovic F, Yi M, Wang Y et al (2009) Gene expression profiling of substantia nigra dopamine neurons: further insights into Parkinson’s disease pathology. Brain 132:1795–1809

    Article  PubMed Central  PubMed  Google Scholar 

  18. Zhang X, Zhou JY, Chin MH et al (2010) Region-specific protein abundance changes in the brain of MPTP-induced Parkinson’s disease mouse model. J Proteome Res 9:1496–1509

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Skovronsky DM, Lee VM, Trojanowski JQ (2006) Neurodegenerative diseases: new concepts of pathogenesis and their therapeutic implications. Annu Rev Pathol 1:151–170

    Article  CAS  PubMed  Google Scholar 

  20. Qu XA, Gudivada RC, Jegga AG et al (2009) Inferring novel disease indications for known drugs by semantically linking drug action and disease mechanism relationships. BMC Bioinformatics 10(Suppl 5):S4

    Article  PubMed Central  PubMed  Google Scholar 

  21. Haupt VJ, Schroeder M (2011) Old friends in new guise: repositioning of known drugs with structural bioinformatics. Brief Bioinform 12:312–326

    Article  CAS  PubMed  Google Scholar 

  22. Ha S, Seo YJ, Kwon MS et al (2008) IDMap: facilitating the detection of potential leads with therapeutic targets. Bioinformatics 24:1413–1415

    Article  CAS  PubMed  Google Scholar 

  23. Chiang AP, Butte AJ (2009) Systematic evaluation of drug-disease relationships to identify leads for novel drug uses. Clin Pharmacol Ther 86:507–510

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Barabasi AL, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12:56–68

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Pujana MA, Han JD, Starita LM et al (2007) Network modeling links breast cancer susceptibility and centrosome dysfunction. Nat Genet 39:1338–1349

    Article  CAS  PubMed  Google Scholar 

  26. Omenn GS (2011) An omics perspective on cancer research. Expert Rev Proteomics 8:147–148

    Article  Google Scholar 

  27. Auffray C, Adcock IM, Chung KF et al (2010) An integrative systems biology approach to understanding pulmonary diseases. Chest 137:1410–1416

    Article  PubMed  Google Scholar 

  28. Soler-Lopez M, Zanzoni A, Lluis R et al (2011) Interactome mapping suggests new mechanistic details underlying Alzheimer’s disease. Genome Res 21:364–376

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. de Chassey B, Navratil V, Tafforeau L et al (2008) Hepatitis C virus infection protein network. Mol Syst Biol 4:230

    Article  PubMed Central  PubMed  Google Scholar 

  30. Diez D, Wheelock AM, Goto S et al (2010) The use of network analyses for elucidating mechanisms in cardiovascular disease. Mol Biosyst 6:289–304

    Article  CAS  PubMed  Google Scholar 

  31. Tanaka T, Oka T, Shimada Y et al (2008) Pharmacogenomics of cardiovascular pharmacology: pharmacogenomic network of cardiovascular disease models. J Pharmacol Sci 107:8–14

    Article  CAS  PubMed  Google Scholar 

  32. Hwang S, Son SW, Kim SC et al (2008) A protein interaction network associated with asthma. J Theor Biol 252:722–731

    Article  CAS  PubMed  Google Scholar 

  33. Fedeles SV, Tian X, Gallagher AR et al (2011) A genetic interaction network of five genes for human polycystic kidney and liver diseases defines polycystin-1 as the central determinant of cyst formation. Nat Genet 43:639–647

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Kaimal V, Sardana D, Bardes EE et al (2011) Integrative systems biology approaches to identify and prioritize disease and drug candidate genes. Methods Mol Biol 700:241–259

    Article  CAS  PubMed  Google Scholar 

  35. Elmer GI, Kafkafi N (2009) Drug discovery in psychiatric illness: mining for gold. Schizophr Bull 35:287–292

    Article  PubMed Central  PubMed  Google Scholar 

  36. Pujol A, Mosca R, Farres J, Aloy P (2010) Unveiling the role of network and systems biology in drug discovery. Trends Pharmacol Sci 31:115–123

    Article  CAS  PubMed  Google Scholar 

  37. Wu Z, Zhao XM, Chen L (2010) A systems biology approach to identify effective cocktail drugs. BMC Syst Biol 4(Suppl 2):S7

    Article  PubMed Central  PubMed  Google Scholar 

  38. Fliri AF, Loging WT, Volkmann RA (2010) Cause-effect relationships in medicine: a protein network perspective. Trends Pharmacol Sci 31:547–555

    Article  CAS  PubMed  Google Scholar 

  39. Geva-Zatorsky N, Dekel E, Cohen AA et al (2010) Protein dynamics in drug combinations: a linear superposition of individual-drug responses. Cell 140:643–651

    Article  CAS  PubMed  Google Scholar 

  40. Sardana D, Zhu C, Zhang M et al (2011) Drug repositioning for orphan diseases. Brief Bioinform 12:346–356

    Article  CAS  PubMed  Google Scholar 

  41. Dimond PF (2010) Drug repositioning gains in popularity. Gen Eng Biotechnol News 30; http://www.genengnews.com/gen-articles/drug-repositioning-gains-in-popularity/3263/

  42. Deftereos SN, Andronis C, Friedla EJ, Persidis A (2011) Drug repurposing and adverse event prediction using high-throughput literature analysis. Wiley Interdiscip Rev Syst Biol Med 3:323–334

    Article  CAS  PubMed  Google Scholar 

  43. Iorio F, Bosotti R, Scacheri E et al (2010) Discovery of drug mode of action and drug repositioning from transcriptional responses. Proc Natl Acad Sci U S A 107:14621–14626

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Kotelnikova E, Yuryev A, Mazo I, Daraselia N (2010) Computational approaches for drug repositioning and combination therapy design. J Bioinform Comput Biol 8:593–606

    Article  CAS  PubMed  Google Scholar 

  45. Dubus E, Ijjaali I, Barberan O, Petitet F (2009) Drug repositioning using in silico compound profiling. Future Med Chem 1:1723–1736

    Article  CAS  PubMed  Google Scholar 

  46. von Eichborn J, Murgueitio MS, Dunkel M et al (2011) PROMISCUOUS: a database for network-based drug-repositioning. Nucleic Acids Res 39:D1060–D1066

    Article  Google Scholar 

  47. Luo H, Chen J, Shi L et al (2011) DRAR-CPI: a server for identifying drug repositioning potential and adverse drug reactions via the chemical-protein interactome. Nucleic Acids Res 39(Web Server issue):W492–W498

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Keiser MJ, Setola V, Irwin JJ et al (2009) Predicting new molecular targets for known drugs. Nature 462:175–181

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Cockell SJ, Weile J, Lord P et al (2010) An integrated dataset for in silico drug discovery. J Integr Bioinform 7:116

    Google Scholar 

  50. Wallach I, Jaitly N, Lilien R (2010) A structure-based approach for mapping adverse drug reactions to the perturbation of underlying biological pathways. PLoS One 5:e12063

    Article  PubMed Central  PubMed  Google Scholar 

  51. Yang L, Chen J, He L (2009) Harvesting candidate genes responsible for serious adverse drug reactions from a chemical-protein interactome. PLoS Comput Biol 5:e1000441

    Article  PubMed Central  PubMed  Google Scholar 

  52. Campillos M, Kuhn M, Gavin AC et al (2008) Drug target identification using side-effect similarity. Science 321:263–266

    Article  CAS  PubMed  Google Scholar 

  53. Xie L, Evangelidis T, Bourne PE (2011) Drug discovery using chemical systems biology: weak inhibition of multiple kinases may contribute to the anti-cancer effect of nelfinavir. PLoS Comput Biol 7:e1002037

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Feng G, Du P, Krett NL et al (2010) A collection of bioconductor methods to visualize gene-list annotations. BMC Res Notes 3:10

    Article  PubMed Central  PubMed  Google Scholar 

  55. Smoot ME, Ono K, Ruscheinski J et al (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27:431–432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Capell K (2009) The FDA O.K.’s Novartis Ilaris. Business Week. http://www.businessweek.com/bwdaily/dnflash/content/jun2009/db20090618_060721.htm

  57. Smith B, Ashburner M, Rosse C et al (2007) The OBO foundry: coordinated evolution of ontologies to support biomedical data integration. Nat Biotechnol 25:1251–1255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Brazma A, Krestyaninova M, Sarkans U (2006) Standards for systems biology. Nat Rev Genet 7:593–605

    Article  CAS  PubMed  Google Scholar 

  59. Antezana E, Kuiper M, Mironov V (2009) Biological knowledge management: the emerging role of the Semantic Web technologies. Brief Bioinform 10:392–407

    Article  PubMed  Google Scholar 

  60. Klipp E, Liebermeister W, Helbig A et al (2007) Systems biology standards – the community speaks. Nat Biotechnol 25:390–391

    Article  CAS  PubMed  Google Scholar 

  61. Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Wu X, Jiang R, Zhang MQ, Li S (2008) Network-based global inference of human disease genes. Mol Syst Biol 4:189

    Article  PubMed Central  PubMed  Google Scholar 

  63. Zhao S, Li S (2010) Network-based relating pharmacological and genomic spaces for drug target identification. PLoS One 5:e11764

    Article  PubMed Central  PubMed  Google Scholar 

  64. Yao X, Hao H, Li Y, Li S (2011) Modularity-based credible prediction of disease genes and detection of disease subtypes on the phenotype-gene heterogeneous network. BMC Syst Biol 5:79

    Article  PubMed Central  PubMed  Google Scholar 

  65. Suthram S, Dudley JT, Chiang AP et al (2010) Network-based elucidation of human disease similarities reveals common functional modules enriched for pluripotent drug targets. PLoS Comput Biol 6:e1000662

    Article  PubMed Central  PubMed  Google Scholar 

  66. Mullard A (2011) 2010 FDA drug approvals. Nat Rev Drug Discov 10:82–85

    Article  CAS  PubMed  Google Scholar 

  67. Rajasethupathy P, Vayttaden SJ, Bhalla US (2005) Systems modeling: a pathway to drug discovery. Curr Opin Chem Biol 9:400–406

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Pan Du, Chenbing Guan, Yong Li and Peter Woollard for sharing the dataset and scientific insights with us. Also thanks to Minhua Zhang to help us with the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian Xia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Mei, H. et al. (2016). A Practical Guide for Exploring Opportunities of Repurposing Drugs for CNS Diseases in Systems Biology. In: Castrillo, J., Oliver, S. (eds) Systems Biology of Alzheimer's Disease. Methods in Molecular Biology, vol 1303. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2627-5_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2627-5_33

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2626-8

  • Online ISBN: 978-1-4939-2627-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics