Skip to main content

Network-Based Analysis for Uncovering Mechanisms Underlying Alzheimer’s Disease

  • Protocol
Systems Biology of Alzheimer's Disease

Abstract

Alzheimer’s disease (AD) is known to be a multifactorial neurodegenerative disorder, and is one of the main causes of dementia in the elderly. Many studies have demonstrated molecules involved in the pathogenesis of AD, however its underlying mechanisms remain obscure. It may be simplistic to try to explain the disease based on the role of a few genes only. Accumulating new, huge amount of information from e.g. genome, proteome and interactome datasets and new knowledge, we are now able to clarify and characterize diseases essentially as a result of dysfunction of molecular networks. Recent studies have indicated that relevant genes affected in human diseases concentrate in a part of the network, often called as “disease module.” In the case of AD, some disease-associated pathways seem different, but some of them are clearly disease-related and coherent. This suggests the existence of a common pathway that negatively drives from healthy state to disease state (i.e., the disease module(s)). Additionally, such disease modules should dynamically change through AD progression. Thus, network-level approaches are indispensable to address unknown mechanisms of AD. In this chapter, we introduce network strategies using gene co-expression and protein interaction networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lewis NE, Schramm G, Bordbar A et al (2010) Large-scale in silico modeling of metabolic interactions between cell types in the human brain. Nat Biotechnol 28:1279–1285

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Mine KL, Shulzhenko N, Yambartsev A et al (2013) Gene network reconstruction reveals cell cycle and antiviral genes as major drivers of cervical cancer. Nat Commun 4:1806

    Article  PubMed Central  PubMed  Google Scholar 

  3. Pichlmair A, Kandasamy K, Alvisi G et al (2012) Viral immune modulators perturb the human molecular network by common and unique strategies. Nature 487:486–490

    Article  CAS  PubMed  Google Scholar 

  4. Rozenblatt-Rosen O, Deo RC, Padi M et al (2012) Interpreting cancer genomes using systematic host network perturbations by tumour virus proteins. Nature 487:491–495

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Barabasi AL, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12:56–68

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Mizuno S, Iijima R, Ogishima S et al (2012) AlzPathway: a comprehensive map of signaling pathways of Alzheimer’s disease. BMC Syst Biol 6:52

    Article  PubMed Central  PubMed  Google Scholar 

  7. Huang Y, Mucke L (2012) Alzheimer mechanisms and therapeutic strategies. Cell 148:1204–1222

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Jonsson T, Stefansson H, Steinberg S et al (2013) Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med 368:107–116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Guerreiro R, Wojtas A, Bras J et al (2013) TREM2 variants in Alzheimer’s disease. N Engl J Med 368:117–127

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Paloneva J, Manninen T, Christman G et al (2002) Mutations in two genes encoding different subunits of a receptor signaling complex result in an identical disease phenotype. Am J Hum Genet 71:656–662

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Guerreiro RJ, Lohmann E, Bras JM et al (2013) Using exome sequencing to reveal mutations in TREM2 presenting as a frontotemporal dementia-like syndrome without bone involvement. JAMA Neurol 70:78–84

    Article  PubMed Central  PubMed  Google Scholar 

  12. Edgar R, Domrachev M, Lash AE (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30:207–210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259

    Article  CAS  PubMed  Google Scholar 

  14. Liang WS, Dunckley T, Beach TG et al (2007) Gene expression profiles in anatomically and functionally distinct regions of the normal aged human brain. Physiol Genomics 28:311–322

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Liang WS, Dunckley T, Beach TG et al (2008) Altered neuronal gene expression in brain regions differentially affected by Alzheimer’s disease: a reference data set. Physiol Genomics 33:240–256

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state.” A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198

    Article  CAS  PubMed  Google Scholar 

  17. Blalock EM, Geddes JW, Chen KC et al (2004) Incipient Alzheimer’s disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proc Natl Acad Sci U S A 101:2173–2178

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Zhang B, Gaiteri C, Bodea LG et al (2013) Integrated systems approach identifies genetic nodes and networks in late-onset alzheimer’s disease. Cell 153:707–720

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Rual JF, Venkatesan K, Hao T et al (2005) Towards a proteome-scale map of the human protein-protein interaction network. Nature 437:1173–1178

    Article  CAS  PubMed  Google Scholar 

  20. Stelzl U, Worm U, Lalowski M et al (2005) A human protein-protein interaction network: a resource for annotating the proteome. Cell 122:957–968

    Article  CAS  PubMed  Google Scholar 

  21. Ewing RM, Chu P, Elisma F et al (2007) Large-scale mapping of human protein-protein interactions by mass spectrometry. Mol Syst Biol 3:89

    Article  PubMed Central  PubMed  Google Scholar 

  22. Zhang B, Horvath S (2005) A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 4:17

    Google Scholar 

  23. Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559

    Article  PubMed Central  PubMed  Google Scholar 

  24. Miller JA, Oldham MC, Geschwind DH (2008) A systems level analysis of transcriptional changes in Alzheimer’s disease and normal aging. J Neurosci 28:1410–1420

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Miller JA, Horvath S, Geschwind DH (2010) Divergence of human and mouse brain transcriptome highlights Alzheimer disease pathways. Proc Natl Acad Sci U S A 107:12698–12703

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Orchard S, Kerrien S, Abbani S et al (2012) Protein interaction data curation: the International Molecular Exchange (IMEx) consortium. Nat Methods 9:345–350

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Razick S, Magklaras G, Donaldson IM (2008) iRefIndex: a consolidated protein interaction database with provenance. BMC Bioinformatics 9:405

    Article  PubMed Central  PubMed  Google Scholar 

  28. Rosvall M, Bergstrom CT (2008) Maps of random walks on complex networks reveal community structure. Proc Natl Acad Sci U S A 105:1118–1123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Rosvall M, Axelsson D, Bergstrom CT (2008) The map equation. Eur Phys J Spec Top 178:13–23

    Article  Google Scholar 

  30. Lancichinetti A, Fortunato S (2009) Community detection algorithms: a comparative analysis. Phys Rev E 80:056117

    Article  Google Scholar 

  31. Ravasz E, Somera AL, Mongru DA et al (2002) Hierarchical organization of modularity in metabolic networks. Science 297:1551–1555

    Article  CAS  PubMed  Google Scholar 

  32. Han JD, Bertin N, Hao T et al (2004) Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 430:88–93

    Article  CAS  PubMed  Google Scholar 

  33. Ahn YY, Bagrow JP, Lehmann S (2010) Link communities reveal multiscale complexity in networks. Nature 466:761–764

    Article  CAS  PubMed  Google Scholar 

  34. Kikuchi M, Ogishima S, Miyamoto T et al (2013) Identification of unstable network modules reveals disease modules associated with the progression of Alzheimer’s disease. PLoS One 8:e76162

    Article  PubMed Central  PubMed  Google Scholar 

  35. Berchtold NC, Cribbs DH, Coleman PD et al (2008) Gene expression changes in the course of normal brain aging are sexually dimorphic. Proc Natl Acad Sci U S A 105:15605–15610

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Stark C, Breitkreutz BJ, Chatr-Aryamontri A et al (2011) The BioGRID interaction database: 2011 update. Nucleic Acids Res 39:D698–D704

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Yao T, Song L, Jin J et al (2008) Distinct modes of regulation of the Uch37 deubiquitinating enzyme in the proteasome and in the Ino80 chromatin-remodeling complex. Mol Cell 31:909–917

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Zediak VP, Berger SL (2008) Hit and run: transient deubiquitylase activity in a chromatin-remodeling complex. Mol Cell 31:773–774

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Keller JN, Hanni KB, Markesbery WR (2000) Impaired proteasome function in Alzheimer’s disease. J Neurochem 75:436–439

    Article  CAS  PubMed  Google Scholar 

  40. Lam YA, Pickart CM, Alban A et al (2000) Inhibition of the ubiquitin-proteasome system in Alzheimer’s disease. Proc Natl Acad Sci U S A 97:9902–9906

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113

    Article  CAS  PubMed  Google Scholar 

  42. Bossi A, Lehner B (2009) Tissue specificity and the human protein interaction network. Mol Syst Biol 5:260

    Article  PubMed Central  PubMed  Google Scholar 

  43. Su AI, Cooke MP, Ching KA et al (2002) Large-scale analysis of the human and mouse transcriptomes. Proc Natl Acad Sci U S A 99:4465–4470

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgement

We thank Drs. Takeshi Ikeuchi and Kensaku Kasuga of Niigata University for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soichi Ogishima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kikuchi, M. et al. (2016). Network-Based Analysis for Uncovering Mechanisms Underlying Alzheimer’s Disease. In: Castrillo, J., Oliver, S. (eds) Systems Biology of Alzheimer's Disease. Methods in Molecular Biology, vol 1303. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2627-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2627-5_29

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2626-8

  • Online ISBN: 978-1-4939-2627-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics