Skip to main content

The Emerging Role of Metalloproteomics in Alzheimer’s Disease Research

  • Protocol
Systems Biology of Alzheimer's Disease

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1303))

Abstract

Metals are increasingly recognized to have an important role in molecular processes underlying Alzheimer’s disease (AD). This chapter discusses the current role of metals in AD and expands on the development of metalloproteomics and how the recent advances in analytical technology will allow detailed investigation of metalloproteins. Investigation of individual metalloproteins will yield new mechanistic details about the role of metals in AD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mattson MP (2004) Pathways towards and away from Alzheimer’s disease. Nature 430:631–639

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Tanzi RE, Bird ED, Latt SA, Neve RL (1987) The amyloid beta protein gene is not duplicated in brains from patients with Alzheimer’s disease. Science 238:666–669

    Article  CAS  PubMed  Google Scholar 

  3. Clark CM, Ewbank D, Lee VM-Y, Trojanowski JQ (1998) Molecular pathology of Alzheimer’s disease: neuronal cytoskeletal abnormalities. In: Growdon JH, Rossor MN (eds) The dementias Vol 19 of Blue books of practical neurology. Butterworth–Heinemann, Boston, pp. 285–304

    Google Scholar 

  4. Migliore L, Coppede F (2009) Genetics, environmental factors and the emerging role of epigenetics in neurodegenerative diseases. Mutat Res 667:82–97

    Article  CAS  PubMed  Google Scholar 

  5. Armstrong RA (2013) What causes Alzheimer’s disease? Folia Neuropathol 51:169–188

    Article  CAS  PubMed  Google Scholar 

  6. Crapper DR, Krishnan SS, Dalton AJ (1973) Brain aluminum distribution in Alzheimer’s disease and experimental neurofibrillary degeneration. Science 180:511–513

    Article  CAS  PubMed  Google Scholar 

  7. Frausto da Silva JJR, Williams RJP (2001) The biological chemistry of the elements. Oxford University Press, Oxford

    Google Scholar 

  8. Guengerich FP (2009) Thematic minireview series: metals in biology. J Biol Chem 284:18557

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Eskici G, Axelsen PH (2012) Copper and oxidative stress in the pathogenesis of Alzheimer’s disease. Biochemistry 51:6289–6311

    Article  CAS  PubMed  Google Scholar 

  10. Duce JA, Bush AI (2010) Biological metals and Alzheimer’s disease: implications for therapeutics and diagnostics. Prog Neurobiol 92:1–18

    Article  CAS  PubMed  Google Scholar 

  11. Hung YH, Bush AI, Cherny RA (2010) Copper in the brain and Alzheimer’s disease. J Biol Inorg Chem 15:61–76

    Article  CAS  PubMed  Google Scholar 

  12. Que EL, Domaille DW, Chang CJ (2008) Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem Rev 108:1517–1549

    Article  CAS  PubMed  Google Scholar 

  13. Kepp KP (2012) Bioinorganic chemistry of Alzheimer’s disease. Chem Rev 112:5193–5239

    Article  CAS  PubMed  Google Scholar 

  14. Sensi SL, Paoletti P, Bush AI, Sekler I (2009) Zinc in the physiology and pathology of the CNS. Nat Rev Neurosci 10:780–791

    Article  CAS  PubMed  Google Scholar 

  15. Squitti R (2012) Metals in Alzheimer’s disease: a systemic perspective. Front Biosci 17:451–472

    Article  CAS  Google Scholar 

  16. Adlard PA, Bush AI (2006) Metals and Alzheimer’s disease. J Alzheimers Dis 10:145–163

    PubMed  Google Scholar 

  17. Collingwood J, Dobson J (2006) Mapping and characterization of iron compounds in Alzheimer’s tissue. J Alzheimers Dis 10:215–222

    PubMed  Google Scholar 

  18. Deibel MA, Ehmann WD, Markesbery WR (1996) Copper, iron, and zinc imbalances in severely degenerated brain regions in Alzheimer’s disease: possible relation to oxidative stress. J Neurol Sci 143:137–142

    Article  CAS  PubMed  Google Scholar 

  19. Magaki S, Raghavan R, Mueller C et al (2007) Iron, copper, and iron regulatory protein 2 in Alzheimer’s disease and related dementias. Neurosci Lett 418:72–76

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Religa D, Strozyk D, Cherny RA et al (2006) Elevated cortical zinc in Alzheimer disease. Neurology 67:69–75

    Article  CAS  PubMed  Google Scholar 

  21. Lovell MA, Robertson JD, Teesdale WJ et al (1998) Copper, iron and zinc in Alzheimer’s disease senile plaques. J Neurol Sci 158:47–52

    Article  CAS  PubMed  Google Scholar 

  22. Miller LM, Wang Q, Telivala TP et al (2006) Synchrotron-based infrared and X-ray imaging shows focalized accumulation of Cu and Zn co-localized with beta-amyloid deposits in Alzheimer’s disease. J Struct Biol 155:30–37

    Article  CAS  PubMed  Google Scholar 

  23. Bush AI, Tanzi RE (2008) Therapeutics for Alzheimer’s disease based on the metal hypothesis. Neurotherapeutics 5:421–432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Valensin D, Mancini FM, Luczkowski M et al (2004) Identification of a novel high affinity copper binding site in the APP(145–155) fragment of amyloid precursor protein. Dalton Trans 2004:16–22

    Article  Google Scholar 

  25. Simons A, Ruppert T, Schmidt C et al (2002) Evidence for a copper-binding superfamily of the amyloid precursor protein. Biochemistry 41:9310–9320

    Article  CAS  PubMed  Google Scholar 

  26. Hesse L, Beher D, Masters CL, Multhaup G (1994) The beta A4 amyloid precursor protein binding to copper. FEBS Lett 349:109–116

    Article  CAS  PubMed  Google Scholar 

  27. Barnham KJ, McKinstry WJ, Multhaup G et al (2003) Structure of the Alzheimer’s disease amyloid precursor protein copper binding domain. A regulator of neuronal copper homeostasis. J Biol Chem 278:17401–17407

    Article  CAS  PubMed  Google Scholar 

  28. Atwood CS, Scarpa RC, Huang X et al (2000) Characterization of copper interactions with Alzheimer amyloid beta peptides: identification of an attomolar-affinity copper binding site on amyloid beta1-42. J Neurochem 75:1219–1233

    Article  CAS  PubMed  Google Scholar 

  29. Armendariz AD, Gonzalez M, Loguinov AV, Vulpe CD (2004) Gene expression profiling in chronic copper overload reveals upregulation of Prnp and App. Physiol Genomics 20:45–54

    Article  CAS  PubMed  Google Scholar 

  30. Bellingham SA, Lahiri DK, Maloney B et al (2004) Copper depletion down-regulates expression of the Alzheimer’s disease amyloid-beta precursor protein gene. J Biol Chem 279:20378–20386

    Article  CAS  PubMed  Google Scholar 

  31. Lin R, Chen X, Li W et al (2008) Exposure to metal ions regulates mRNA levels of APP and BACE1 in PC12 cells: blockage by curcumin. Neurosci Lett 440:344–347

    Article  CAS  PubMed  Google Scholar 

  32. Angeletti B, Waldron KJ, Freeman KB et al (2005) BACE1 cytoplasmic domain interacts with the copper chaperone for superoxide dismutase-1 and binds copper. J Biol Chem 280:17930–17937

    Article  CAS  PubMed  Google Scholar 

  33. Das HK, Baez ML (2008) ADR1 interacts with a down-stream positive element to activate PS1 transcription. Front Biosci 13:3439–3447

    Article  CAS  PubMed  Google Scholar 

  34. Hoke DE, Tan JL, Ilaya NT et al (2005) In vitro gamma-secretase cleavage of the Alzheimer’s amyloid precursor protein correlates to a subset of presenilin complexes and is inhibited by zinc. FEBS J 272:5544–5557

    Article  CAS  PubMed  Google Scholar 

  35. Allinson TM, Parkin ET, Turner AJ, Hooper NM (2003) ADAMs family members as amyloid precursor protein alpha-secretases. J Neurosci Res 74:342–352

    Article  CAS  PubMed  Google Scholar 

  36. Maynard CJ, Cappai R, Volitakis I et al (2002) Overexpression of Alzheimer’s disease amyloid-beta opposes the age-dependent elevations of brain copper and iron. J Biol Chem 277:44670–44676

    Article  CAS  PubMed  Google Scholar 

  37. Phinney AL, Drisaldi B, Schmidt SD et al (2003) In vivo reduction of amyloid-beta by a mutant copper transporter. Proc Natl Acad Sci U S A 100:14193–14198

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Bellingham SA, Ciccotosto GD, Needham BE et al (2004) Gene knockout of amyloid precursor protein and amyloid precursor-like protein-2 increases cellular copper levels in primary mouse cortical neurons and embryonic fibroblasts. J Neurochem 91:423–428

    Article  CAS  PubMed  Google Scholar 

  39. White AR, Reyes R, Mercer JF et al (1999) Copper levels are increased in the cerebral cortex and liver of APP and APLP2 knockout mice. Brain Res 842:439–444

    Article  CAS  PubMed  Google Scholar 

  40. Evans GA (2000) Designer science and the “omic” revolution. Nat Biotechnol 18:127

    Article  CAS  PubMed  Google Scholar 

  41. Weinstein JN (1998) Fishing expeditions. Science 282:627

    Article  Google Scholar 

  42. Haraguchi H (2004) Metallomics as integrated biometal science. J Anal Atom Spectrom 19:5–14

    Article  CAS  Google Scholar 

  43. Szpunar J (2004) Metallomics: a new frontier in analytical chemistry. Anal Bioanal Chem 378:54–56

    Article  CAS  PubMed  Google Scholar 

  44. Dudev T, Lim C (2003) Principles governing Mg, Ca, and Zn binding and selectivity in proteins. Chem Rev 103:773–788

    Article  CAS  PubMed  Google Scholar 

  45. Cvetkovic A, Menon AL, Thorgersen MP et al (2010) Microbial metalloproteomes are largely uncharacterized. Nature 466:779–782

    Article  CAS  PubMed  Google Scholar 

  46. Lothian A, Hare DJ, Grimm R et al (2013) Metalloproteomics: principles, challenges and applications to neurodegeneration. Front Aging Neurosci 5:35

    Article  PubMed Central  PubMed  Google Scholar 

  47. Yamashita MM, Wesson L, Eisenman G, Eisenberg D (1990) Where metal ions bind in proteins. Proc Natl Acad Sci U S A 87:5648–5652

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Meermann B, Kießhauer M (2011) Development of an oxygen-gradient system to overcome plasma instabilities during HPLC/ICP-MS measurements using gradient elution. J Anal Atom Spectrom 26:2069–2075

    Article  CAS  Google Scholar 

  49. Szpunar J (2005) Advances in analytical methodology for bioinorganic speciation analysis: metallomics, metalloproteomics and heteroatom-tagged proteomics and metabolomics. Analyst 130:442–465

    Article  CAS  PubMed  Google Scholar 

  50. Szpunar J (2000) Bio-inorganic speciation analysis by hyphenated techniques. Analyst 125:963–988

    Article  CAS  PubMed  Google Scholar 

  51. Jahromi EZ, White W, Wu Q et al (2010) Remarkable effect of mobile phase buffer on the SEC-ICP-AES derived Cu, Fe and Zn-metalloproteome pattern of rabbit blood plasma. Metallomics 2:460–468

    Article  CAS  PubMed  Google Scholar 

  52. Barnett JP, Scanlan DJ, Blindauer CA (2012) Protein fractionation and detection for metalloproteomics: challenges and approaches. Anal Bioanal Chem 402:3311–3322

    Article  CAS  PubMed  Google Scholar 

  53. Choi J-S, Braymer JJ, Nanga RP et al (2010) Design of small molecules that target metal-Aβ species and regulate metal-induced Aβ aggregation and neurotoxicity. Proc Natl Acad Sci U S A 107:21990–21995

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Stillman MJ (1995) Metallothioneins. Coord Chem Rev 144:461–511

    Article  CAS  Google Scholar 

  55. Uchida Y, Takio K, Titani K et al (1991) The growth inhibitory factor that is deficient in the Alzheimer’s disease brain is a 68 amino acid metallothionein-like protein. Neuron 7:337–347

    Article  CAS  PubMed  Google Scholar 

  56. Ferrarello C, Fernández de la Campa MR, Sanz-Medel A (2002) Multielement trace-element speciation in metal-biomolecules by chromatography coupled with ICP-MS. Anal Bioanal Chem 373:412–421

    Article  CAS  PubMed  Google Scholar 

  57. Lobinski R, Chassaigne H, Szpunar J (1998) Analysis for metallothioneins using coupled techniques. Talanta 46:271–289

    Article  CAS  PubMed  Google Scholar 

  58. Chassaigne H, Lobinski R (1998) Characterization of horse kidney metallothionein isoforms by electrospray MS and reversed-phase HPLC-electrospray MS. Analyst 123:2125–2130

    Article  CAS  PubMed  Google Scholar 

  59. Gellein K, Roos PM, Evje L et al (2007) Separation of proteins including metallothionein in cerebrospinal fluid by size exclusion HPLC and determination of trace elements by HR-ICP-MS. Brain Res 1174:136–142

    Article  CAS  PubMed  Google Scholar 

  60. Prange A, Schaumlöffel D, Brätter P et al (2001) Species analysis of metallothionein isoforms in human brain cytosols by use of capillary electrophoresis hyphenated to inductively coupled plasma-sector field mass spectrometry. Fresenius J Anal Chem 371:764–774

    Article  CAS  PubMed  Google Scholar 

  61. Richarz A-N, Bratter P (2002) Speciation analysis of trace elements in the brains of individuals with Alzheimer’s disease with special emphasis on metallothioneins. Anal Bioanal Chem 372:412–417

    Article  CAS  PubMed  Google Scholar 

  62. Becker JS, Zoriy M, Przybylski M, Becker JS (2007) High resolution mass spectrometric brain proteomics by MALDI-FTICR-MS combined with determination of P, S, Cu, Zn and Fe by LA-ICP-MS. Int J Mass Spectrom 261:68–73

    Article  CAS  Google Scholar 

  63. Becker JS, Zoriy M, Becker JS et al (2004) Determination of phosphorus and metals in human brain proteins after isolation by gel electrophoresis by laser ablation inductively coupled plasma source mass spectrometry. J Anal Atom Spectrom 19:149–152

    Article  CAS  Google Scholar 

  64. Becker JS, Zoriy M, Przybylski M, Sabine Becker J (2007) Study of formation of Cu- and Zn-containing tau protein using isotopically-enriched tracers by LA-ICP-MS and MALDI-FTICR-MS. J Anal Atom Spectrom 22:63–68

    Article  Google Scholar 

  65. Chuang J-Y, Lee C-W, Shih Y-H et al (2012) Interactions between amyloid-β and hemoglobin: implications for amyloid plaque formation in Alzheimer’s disease. PLoS One 7:e33120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Garcia-Sartal C, Taebunpakul S, Stokes E et al (2012) Two-dimensional HPLC coupled to ICP-MS and electrospray ionisation (ESI)-MS/MS for investigating the bioavailability in vitro of arsenic species from edible seaweed. Anal Bioanal Chem 402:3359–3369

    Article  CAS  PubMed  Google Scholar 

  67. Połatajko A, Banaś B, Encinar JR, Szpunar J (2005) Investigation of the recovery of selenomethionine from selenized yeast by two-dimensional LC–ICP MS. Anal Bioanal Chem 381:844–849

    Article  PubMed  Google Scholar 

  68. Barnett JP, Scanlan DJ, Blindauer CA (2012) Fractionation and identification of metalloproteins from a marine cyanobacterium. Anal Bioanal Chem 402:3371–3377

    Article  CAS  PubMed  Google Scholar 

  69. Yin H, Killeen K (2007) The fundamental aspects and applications of Agilent HPLC-Chip. J Sep Sci 30:1427–1434

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blaine R. Roberts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hare, D.J., Rembach, A., Roberts, B.R. (2016). The Emerging Role of Metalloproteomics in Alzheimer’s Disease Research. In: Castrillo, J., Oliver, S. (eds) Systems Biology of Alzheimer's Disease. Methods in Molecular Biology, vol 1303. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2627-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2627-5_22

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2626-8

  • Online ISBN: 978-1-4939-2627-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics