Skip to main content

Systems Biology Approaches to the Study of Biological Networks Underlying Alzheimer’s Disease: Role of miRNAs

  • Protocol
Systems Biology of Alzheimer's Disease

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1303))

Abstract

MicroRNAs (miRNAs) are emerging as significant regulators of mRNA complexity in the human central nervous system (CNS) thereby controlling distinct gene expression profiles in a spatio-temporal manner during development, neuronal plasticity, aging and (age-related) neurodegeneration, including Alzheimer’s disease (AD). Increasing effort is expended towards dissecting and deciphering the molecular and genetic mechanisms of neurobiological and pathological functions of these brain-enriched miRNAs. Along these lines, recent data pinpoint distinct miRNAs and miRNA networks being linked to APP splicing, processing and Aβ pathology (Lukiw et al., Front Genet 3:327, 2013), and furthermore, to the regulation of tau and its cellular subnetworks (Lau et al., EMBO Mol Med 5:1613, 2013), altogether underlying the onset and propagation of Alzheimer’s disease. MicroRNA profiling studies in Alzheimer’s disease suffer from poor consensus which is an acknowledged concern in the field, and constitutes one of the current technical challenges. Hence, a strong demand for experimental and computational systems biology approaches arises, to incorporate and integrate distinct levels of information and scientific knowledge into a complex system of miRNA networks in the context of the transcriptome, proteome and metabolome in a given cellular environment. Here, we will discuss the state-of-the-art technologies and computational approaches on hand that may lead to a deeper understanding of the complex biological networks underlying the pathogenesis of Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Caspersson T, Schultz J (1940) Ribonucleic acids in both nucleus and cytoplasm, and the function of the nucleolus. Proc Natl Acad Sci U S A 26:507–515

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Caspersson T, Schultz J (1939) Pentose nucleotides in the cytoplasm of growing tissues. Nature 143:602–603

    CAS  Google Scholar 

  3. Watson JD, Crick FH (1953) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171:737–738

    CAS  PubMed  Google Scholar 

  4. Crick FH (1958) On protein synthesis. Symp Soc Exp Biol 12:138–163

    CAS  PubMed  Google Scholar 

  5. Holley RW, Apgar J, Everett GA et al (1965) Structure of a ribonucleic acid. Science 147:1462–1465

    CAS  PubMed  Google Scholar 

  6. Palade GE (1955) A small particulate component of the cytoplasm. J Biophys Biochem Cytol 1:59–68

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Ban N, Nissen P, Hansen J et al (2000) The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 289:905–920

    CAS  PubMed  Google Scholar 

  8. Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12:861–874

    CAS  PubMed  Google Scholar 

  9. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    CAS  PubMed  Google Scholar 

  10. Gomes AQ, Nolasco S, Soares H (2013) Non-coding RNAs: multi-tasking molecules in the cell. Int J Mol Sci 14:16010–16039

    PubMed Central  PubMed  Google Scholar 

  11. Winter J, Jung S, Keller S et al (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11:228–234

    CAS  PubMed  Google Scholar 

  12. Wu H, Xu H, Miraglia LJ, Crooke ST (2000) Human RNase III is a 160-kDa protein involved in preribosomal RNA processing. J Biol Chem 275:36957–36965

    CAS  PubMed  Google Scholar 

  13. Lee Y, Ahn C, Han J et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415–419

    CAS  PubMed  Google Scholar 

  14. Zeng Y, Cullen BR (2004) Structural requirements for pre-microRNA binding and nuclear export by Exportin 5. Nucleic Acids Res 32:4776–4785

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Zamore PD, Tuschl T, Sharp PA, Bartel DP (2000) RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101:25–33

    CAS  PubMed  Google Scholar 

  16. Bagga S, Bracht J, Hunter S et al (2005) Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122:553–563

    CAS  PubMed  Google Scholar 

  17. Olsen PH, Ambros V (1999) The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol 216:671–680

    CAS  PubMed  Google Scholar 

  18. Chekulaeva M, Filipowicz W (2009) Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells. Curr Opin Cell Biol 21:452–460

    CAS  PubMed  Google Scholar 

  19. Liu J, Valencia-Sanchez MA, Hannon GJ, Parker R (2005) MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol 7:719–723

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Brengues M, Teixeira D, Parker R (2005) Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies. Science 310:486–489

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Ebert MS, Sharp PA (2010) Emerging roles for natural microRNA sponges. Curr Biol 20:R858–R861

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Poliseno L, Salmena L, Zhang J et al (2010) A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465:1033–1038

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Memczak S, Jens M, Elefsinioti A et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495:333–338

    CAS  PubMed  Google Scholar 

  24. Salzman J, Gawad C, Wang PL et al (2012) Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 7:e30733

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Suh YH, Checler F (2002) Amyloid precursor protein, presenilins, and alpha-synuclein: molecular pathogenesis and pharmacological applications in Alzheimer’s disease. Pharmacol Rev 54:469–525

    CAS  PubMed  Google Scholar 

  26. Pasquinelli AE, Reinhart BJ, Slack F et al (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408:86–89

    CAS  PubMed  Google Scholar 

  27. Lukiw WJ (2007) Micro-RNA speciation in fetal, adult and Alzheimer’s disease hippocampus. Neuroreport 18:297–300

    CAS  PubMed  Google Scholar 

  28. Delay C, Mandemakers W, Hebert SS (2012) MicroRNAs in Alzheimer’s disease. Neurobiol Dis 46:285–290

    CAS  PubMed  Google Scholar 

  29. Johnson R, Noble W, Tartaglia GG, Buckley NJ (2012) Neurodegeneration as an RNA disorder. Prog Neurobiol 99:293–315

    CAS  PubMed  Google Scholar 

  30. Satoh J (2012) Molecular network of microRNA targets in Alzheimer’s disease brains. Exp Neurol 235:436–446

    CAS  PubMed  Google Scholar 

  31. Satoh J (2012) Molecular network analysis of human microRNA targetome: from cancers to Alzheimer’s disease. BioData Min 5:17

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Hebert SS, De Strooper B (2009) Alterations of the microRNA network cause neurodegenerative disease. Trends Neurosci 32:199–206

    CAS  PubMed  Google Scholar 

  33. Junn E, Mouradian MM (2012) MicroRNAs in neurodegenerative diseases and their therapeutic potential. Pharmacol Ther 133:142–150

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Lau P, Bossers K, Janky R et al (2013) Alteration of the microRNA network during the progression of Alzheimer’s disease. EMBO Mol Med 5:1613–1634

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Salta E, De Strooper B (2012) Non-coding RNAs with essential roles in neurodegenerative disorders. Lancet Neurol 11:189–200

    CAS  PubMed  Google Scholar 

  36. Smith P, Al Hashimi A, Girard J et al (2011) In vivo regulation of amyloid precursor protein neuronal splicing by microRNAs. J Neurochem 116:240–247

    CAS  PubMed  Google Scholar 

  37. Smith PY, Delay C, Girard J, Papon MA et al (2011) MicroRNA-132 loss is associated with tau exon 10 inclusion in progressive supranuclear palsy. Hum Mol Genet 20:4016–4024

    CAS  PubMed  Google Scholar 

  38. Hebert SS, Papadopoulou AS, Smith P et al (2010) Genetic ablation of Dicer in adult forebrain neurons results in abnormal tau hyperphosphorylation and neurodegeneration. Hum Mol Genet 19:3959–3969

    CAS  PubMed  Google Scholar 

  39. Yin JQ, Zhao RC, Morris KV (2008) Profiling microRNA expression with microarrays. Trends Biotechnol 26:70–76

    CAS  PubMed  Google Scholar 

  40. Li W, Ruan K (2009) MicroRNA detection by microarray. Anal Bioanal Chem 394:1117–1124

    CAS  PubMed  Google Scholar 

  41. Chen C, Ridzon DA, Broomer AJ et al (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179

    PubMed Central  PubMed  Google Scholar 

  42. Chen C, Tan R, Wong L et al (2011) Quantitation of microRNAs by real-time RT-qPCR. Methods Mol Biol 687:113–134

    CAS  PubMed  Google Scholar 

  43. Hurley J, Roberts D, Bond A et al (2012) Stem-loop RT-qPCR for microRNA expression profiling. Methods Mol Biol 822:33–52

    CAS  PubMed  Google Scholar 

  44. Hafner M, Landgraf P, Ludwig J et al (2008) Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing. Methods 44:3–12

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Berninger P, Gaidatzis D, van Nimwegen E, Zavolan M (2008) Computational analysis of small RNA cloning data. Methods 44:13–21

    CAS  PubMed  Google Scholar 

  46. Baker M (2010) MicroRNA profiling: separating signal from noise. Nat Methods 7:687–692

    CAS  PubMed  Google Scholar 

  47. Git A, Dvinge H, Salmon-Divon M et al (2010) Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. RNA 16:991–1006

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Pritchard CC, Cheng HH, Tewari M (2012) MicroRNA profiling: approaches and considerations. Nat Rev Genet 13:358–369

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Griffiths-Jones S (2004) The microRNA registry. Nucleic Acids Res 32(Database issue):D109–D111

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Jiang J, Lee EJ, Gusev Y, Schmittgen TD (2005) Real-time expression profiling of microRNA precursors in human cancer cell lines. Nucleic Acids Res 33:5394–5403

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Landgraf P, Rusu M, Sheridan R et al (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129:1401–1414

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Morin RD, O’Connor MD, Griffith M et al (2008) Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res 18:610–621

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Liu CG, Calin GA, Meloon B et al (2004) An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc Natl Acad Sci U S A 101:9740–9744

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Liu CG, Spizzo R, Calin GA, Croce CM (2008) Expression profiling of microRNA using oligo DNA arrays. Methods 44:22–30

    PubMed Central  PubMed  Google Scholar 

  55. Liu CG, Calin GA, Volinia S, Croce CM (2008) MicroRNA expression profiling using microarrays. Nat Protoc 3:563–578

    CAS  PubMed  Google Scholar 

  56. Babak T, Zhang W, Morris Q et al (2004) Probing microRNAs with microarrays: tissue specificity and functional inference. RNA 10:1813–1819

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Barad O, Meiri E, Avniel A et al (2004) MicroRNA expression detected by oligonucleotide microarrays: system establishment and expression profiling in human tissues. Genome Res 14:2486–2494

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Miska EA, Alvarez-Saavedra E, Townsend M et al (2004) Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol 5:R68

    PubMed Central  PubMed  Google Scholar 

  59. Nelson PT, Baldwin DA, Scearce LM et al (2004) Microarray-based, high-throughput gene expression profiling of microRNAs. Nat Methods 1:155–161

    CAS  PubMed  Google Scholar 

  60. Thomson JM, Parker J, Perou CM, Hammond SM (2004) A custom microarray platform for analysis of microRNA gene expression. Nat Methods 1:47–53

    CAS  PubMed  Google Scholar 

  61. Castoldi M, Schmidt S, Benes V et al (2006) A sensitive array for microRNA expression profiling (miChip) based on locked nucleic acids (LNA). RNA 12:913–920

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Kramer MF (2011) Stem-loop RT-qPCR for miRNAs. Curr Protoc Mol Biol Chapter 15:Unit 15.10. doi:10.1002/0471142727.mb1510s95

    Google Scholar 

  63. Castoldi M, Benes V, Hentze MW, Muckenthaler MU (2007) miChip: a microarray platform for expression profiling of microRNAs based on locked nucleic acid (LNA) oligonucleotide capture probes. Methods 43:146–152

    CAS  PubMed  Google Scholar 

  64. Valoczi A, Hornyik C, Varga N et al (2004) Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Res 32:e175

    PubMed Central  PubMed  Google Scholar 

  65. Nelson PT, Baldwin DA, Kloosterman WP et al (2006) RAKE and LNA-ISH reveal microRNA expression and localization in archival human brain. RNA 12:187–191

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Castoldi M, Schmidt S, Benes V et al (2008) miChip: an array-based method for microRNA expression profiling using locked nucleic acid capture probes. Nat Protoc 3:321–329

    CAS  PubMed  Google Scholar 

  67. De Cecco L, Dugo M, Canevari S et al (2013) Measuring microRNA expression levels in oncology: from samples to data analysis. Crit Rev Oncog 18:273–287

    PubMed  Google Scholar 

  68. Schmittgen TD, Jiang J, Liu Q, Yang L (2004) A high-throughput method to monitor the expression of microRNA precursors. Nucleic Acids Res 32:e43

    PubMed Central  PubMed  Google Scholar 

  69. Moltzahn F, Olshen AB, Baehner L et al (2011) Microfluidic-based multiplex qRT-PCR identifies diagnostic and prognostic microRNA signatures in the sera of prostate cancer patients. Cancer Res 71:550–560

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Shi R, Chiang VL (2005) Facile means for quantifying microRNA expression by real-time PCR. Biotechniques 39:519–525

    CAS  PubMed  Google Scholar 

  71. Raymond CK, Roberts BS, Garrett-Engele P et al (2005) Simple, quantitative primer-extension PCR assay for direct monitoring of microRNAs and short-interfering RNAs. RNA 11:1737–1744

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Benes V, Castoldi M (2010) Expression profiling of microRNA using real-time quantitative PCR, how to use it and what is available. Methods 50:244–249

    CAS  PubMed  Google Scholar 

  73. Redshaw N, Wilkes T, Whale A et al (2013) A comparison of miRNA isolation and RT-qPCR technologies and their effects on quantification accuracy and repeatability. Biotechniques 54:155–164

    CAS  PubMed  Google Scholar 

  74. Schmittgen TD, Lee EJ, Jiang J et al (2008) Real-time PCR quantification of precursor and mature microRNA. Methods 44:31–38

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Liu DZ, Tian Y, Ander BP et al (2010) Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. J Cereb Blood Flow Metab 30:92–101

    PubMed Central  PubMed  Google Scholar 

  76. Bustin SA, Benes V, Garson JA et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    CAS  PubMed  Google Scholar 

  77. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108

    CAS  PubMed  Google Scholar 

  78. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    CAS  PubMed  Google Scholar 

  79. Peltier HJ, Latham GJ (2008) Normalization of microRNA expression levels in quantitative RT-PCR assays: identification of suitable reference RNA targets in normal and cancerous human solid tissues. RNA 14:844–852

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Mestdagh P, Van Vlierberghe P, De Weer A et al (2009) A novel and universal method for microRNA RT-qPCR data normalization. Genome Biol 10:R64

    PubMed Central  PubMed  Google Scholar 

  81. Liu J, Jennings SF, Tong W, Hong H (2011) Next generation sequencing for profiling expression of miRNAs: technical progress and applications in drug development. J Biomed Sci Eng 4:666–676

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Kircher M, Kelso J (2010) High-throughput DNA sequencing—concepts and limitations. Bioessays 32:524–536

    CAS  PubMed  Google Scholar 

  83. Rizzo JM, Buck MJ (2012) Key principles and clinical applications of “next-generation” DNA sequencing. Cancer Prev Res (Phila) 5:887–900

    CAS  Google Scholar 

  84. Eminaga S, Christodoulou DC, Vigneault F et al. (2013) Quantification of microRNA expression with next-generation sequencing. Curr Protoc Mol Biol Chapter 4:Unit 4.17. doi:10.1002/0471142727.mb0417s103

    Google Scholar 

  85. Hafner M, Renwick N, Brown M et al (2011) RNA-ligase-dependent biases in miRNA representation in deep-sequenced small RNA cDNA libraries. RNA 17:1697–1712

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Flicek P, Birney E (2009) Sense from sequence reads: methods for alignment and assembly. Nat Methods 6(11 Suppl):S6–S12

    CAS  PubMed  Google Scholar 

  87. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36(Database issue):D154–D158

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Yang JH, Shao P, Zhou H et al (2010) deepBase: a database for deeply annotating and mining deep sequencing data. Nucleic Acids Res 38(Database issue):D123–D130

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39(Database issue):D152–D157

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Flicek P, Ahmed I, Amode MR et al (2013) Ensembl 2013. Nucleic Acids Res 41(Database issue):D48–D55

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Meyer LR, Zweig AS, Hinrichs AS et al (2013) The UCSC Genome Browser database: extensions and updates 2013. Nucleic Acids Res 41(Database issue):D64–D69

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Friedlander MR, Chen W, Adamidi C et al (2008) Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol 26(4):407–415

    PubMed  Google Scholar 

  93. Hackenberg M, Rodriguez-Ezpeleta N, Aransay AM (2011) miRanalyzer: an update on the detection and analysis of microRNAs in high-throughput sequencing experiments. Nucleic Acids Res 39(Web Server issue):W132–W138

    CAS  PubMed Central  PubMed  Google Scholar 

  94. An J, Lai J, Lehman ML, Nelson CC (2013) miRDeep*: an integrated application tool for miRNA identification from RNA sequencing data. Nucleic Acids Res 41:727–737

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Hendrix D, Levine M, Shi W (2010) miRTRAP, a computational method for the systematic identification of miRNAs from high throughput sequencing data. Genome Biol 11:R39

    PubMed Central  PubMed  Google Scholar 

  96. Mathelier A, Carbone A (2010) MIReNA: finding microRNAs with high accuracy and no learning at genome scale and from deep sequencing data. Bioinformatics 26:2226–2234

    CAS  PubMed  Google Scholar 

  97. Li Y, Zhang Z, Liu F et al (2012) Performance comparison and evaluation of software tools for microRNA deep-sequencing data analysis. Nucleic Acids Res 40:4298–4305

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Oshlack A, Robinson MD, Young MD (2010) From RNA-seq reads to differential expression results. Genome Biol 11:220

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Mortazavi A, Williams BA, McCue K et al (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    CAS  PubMed  Google Scholar 

  100. Robinson MD, Oshlack A (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11:R25

    PubMed Central  PubMed  Google Scholar 

  101. Langmead B, Hansen KD, Leek JT (2010) Cloud-scale RNA-sequencing differential expression analysis with Myrna. Genome Biol 11:R83

    PubMed Central  PubMed  Google Scholar 

  102. Wang L, Feng Z, Wang X et al (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136–138

    PubMed  Google Scholar 

  103. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Hardcastle TJ, Kelly KA (2010) baySeq: empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinformatics 11:422

    PubMed Central  PubMed  Google Scholar 

  105. Sendler E, Johnson GD, Krawetz SA (2011) Local and global factors affecting RNA sequencing analysis. Anal Biochem 419:317–322

    CAS  PubMed  Google Scholar 

  106. Aird D, Ross MG, Chen WS et al (2011) Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol 12:R18

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Linsen SE, de Wit E, Janssens G et al (2009) Limitations and possibilities of small RNA digital gene expression profiling. Nat Methods 6:474–476

    CAS  PubMed  Google Scholar 

  108. Hansen KD, Irizarry RA, Wu Z (2012) Removing technical variability in RNA-seq data using conditional quantile normalization. Biostatistics 13:204–216

    PubMed Central  PubMed  Google Scholar 

  109. Trapnell C, Salzberg SL (2009) How to map billions of short reads onto genomes. Nat Biotechnol 27:455–457

    CAS  PubMed Central  PubMed  Google Scholar 

  110. McPherson JD (2009) Next-generation gap. Nat Methods 6(11 Suppl):S2–S5

    CAS  PubMed  Google Scholar 

  111. Chugh P, Dittmer DP (2012) Potential pitfalls in microRNA profiling. Wiley Interdiscip Rev RNA 3:601–616

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664

    CAS  PubMed  Google Scholar 

  113. Albert R (2007) Network inference, analysis, and modeling in systems biology. Plant Cell 19:3327–3338

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Ma’ayan A (2011) Introduction to network analysis in systems biology. Sci Signal 4:tr5. doi:10.1126/scisignal.2001965

    PubMed Central  PubMed  Google Scholar 

  115. Lewis BP, Shih IH, Jones-Rhoades MW et al (2003) Prediction of mammalian microRNA targets. Cell 115:787–798

    CAS  PubMed  Google Scholar 

  116. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    CAS  PubMed  Google Scholar 

  117. Grimson A, Farh KK, Johnston WK et al (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27:91–105

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Griffiths-Jones S, Grocock RJ, van Dongen S et al (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34(Database issue):D140–D144

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Vergoulis T, Vlachos IS, Alexiou P et al (2012) TarBase 6.0: capturing the exponential growth of miRNA targets with experimental support. Nucleic Acids Res 40(Database issue):D222–D229

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Marbach D, Prill RJ, Schaffter T et al (2010) Revealing strengths and weaknesses of methods for gene network inference. Proc Natl Acad Sci U S A 107:6286–6291

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Prill RJ, Marbach D, Saez-Rodriguez J et al (2010) Towards a rigorous assessment of systems biology models: the DREAM3 challenges. PLoS One 5:e9202

    PubMed Central  PubMed  Google Scholar 

  123. De Smet R, Marchal K (2010) Advantages and limitations of current network inference methods. Nat Rev Microbiol 8:717–729

    PubMed  Google Scholar 

  124. Szederkenyi G, Banga JR, Alonso AA (2011) Inference of complex biological networks: distinguishability issues and optimization-based solutions. BMC Syst Biol 5:177

    PubMed Central  PubMed  Google Scholar 

  125. de Hoon MJ, Imoto S, Kobayashi K et al (2003) Inferring gene regulatory networks from time-ordered gene expression data of Bacillus subtilis using differential equations. Pac Symp Biocomput 8:17–28

    Google Scholar 

  126. Kato M, Tsunoda T, Takagi T (2000) Inferring genetic networks from DNA microarray data by multiple regression analysis. Genome Inform 11:118–128

    CAS  Google Scholar 

  127. Marbach D, Costello JC, Kuffner R et al (2012) Wisdom of crowds for robust gene network inference. Nat Methods 9:796–804

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Euler L (1741) Solutio problematis ad geometriam situs pertinentis. Commentarii Academiae Scientiarum Petropolitanae 8:128–140

    Google Scholar 

  129. Travers J, Milgram S (1969) An experimental study of the small world problem. Sociometry 32:425–443

    Google Scholar 

  130. Wagner A, Fell DA (2001) The small world inside large metabolic networks. Proc Biol Sci 268:1803–1810

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Alon U (2007) Network motifs: theory and experimental approaches. Nat Rev Genet 8:450–461

    CAS  PubMed  Google Scholar 

  132. Ingram P, Stumpf M, Stark J (2006) Network motifs: structure does not determine function. BMC Genomics 7:108

    PubMed Central  PubMed  Google Scholar 

  133. Luce RD, Perry AD (1949) A method of matrix analysis of group structure. Psychometrika 14:95–116

    CAS  PubMed  Google Scholar 

  134. Spirin V, Mirny LA (2003) Protein complexes and functional modules in molecular networks. Proc Natl Acad Sci U S A 100:12123–12128

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Royer L, Reimann M, Andreopoulos B, Schroeder M (2008) Unraveling protein networks with power graph analysis. PLoS Comput Biol 4:e1000108

    PubMed Central  PubMed  Google Scholar 

  136. Pržulj N (2007) Biological network comparison using graphlet degree distribution. Bioinformatics 23:e177–e183

    PubMed  Google Scholar 

  137. Milenkovic T, Przulj N (2008) Uncovering biological network function via graphlet degree signatures. Cancer Inform 6:257–273

    PubMed  Google Scholar 

  138. Eykhoff P (1974) System identification: parameter and state estimation. Wiley-Interscience, New York

    Google Scholar 

  139. Levine E, Ben Jacob E, Levine H (2007) Target-specific and global effectors in gene regulation by MicroRNA. Biophys J 93:L52–L54

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Zinovyev A, Morozova N, Gorban AN, Harel-Belan A (2013) Mathematical modeling of microRNA-mediated mechanisms of translation repression. Adv Exp Med Biol 774:189–224

    CAS  PubMed  Google Scholar 

  141. Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81:2340–2361

    CAS  Google Scholar 

  142. Minton AP (2001) The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. J Biol Chem 276:10577–10580

    CAS  PubMed  Google Scholar 

  143. Brown KS, Hill CC, Calero GA et al (2004) The statistical mechanics of complex signaling networks: nerve growth factor signaling. Phys Biol 1:184–195

    CAS  PubMed  Google Scholar 

  144. El Samad H, Khammash M, Petzold L, Gillespie D (2005) Stochastic modelling of gene regulatory networks. Int J Robust Nonlinear Control 15:691–711

    Google Scholar 

  145. Bokes P, King JR, Wood AT, Loose M (2012) Multiscale stochastic modelling of gene expression. J Math Biol 65:493–520

    PubMed  Google Scholar 

  146. Lai X, Bhattacharya A, Schmitz U et al (2013) A systems biology approach to study microRNA-mediated gene regulatory networks. Biomed Res Int 2013:703849

    PubMed Central  PubMed  Google Scholar 

  147. Xiao Y (2009) A tutorial on analysis and simulation of boolean gene regulatory network models. Curr Genomics 10:511–525

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Albert I, Thakar J, Li S et al (2008) Boolean network simulations for life scientists. Source Code Biol Med 3:16

    PubMed Central  PubMed  Google Scholar 

  149. de Jong H (2002) Modeling and simulation of genetic regulatory systems: a literature review. J Comput Biol 9:67–103

    PubMed  Google Scholar 

  150. Braak H, Braak E (1995) Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol Aging 16:271–278, discussion 16:278-284

    CAS  PubMed  Google Scholar 

  151. Chaplain MAJ (2011) Multiscale mathematical modelling in biology and medicine. IMA J Appl Math 76:371–388

    Google Scholar 

  152. Betel D, Wilson M, Gabow A et al (2008) The microRNA.org resource: targets and expression. Nucleic Acids Res 36(Database issue):D149–D153

    CAS  PubMed Central  PubMed  Google Scholar 

  153. Alexiou P, Vergoulis T, Gleditzsch M et al (2010) miRGen 2.0: a database of microRNA genomic information and regulation. Nucleic Acids Res 38(Database issue):D137–D141

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Wang WC, Lin FM, Chang WC et al (2009) miRExpress: analyzing high-throughput sequencing data for profiling microRNA expression. BMC Bioinformatics 10:328

    PubMed Central  PubMed  Google Scholar 

  155. Wu J, Liu Q, Wang X et al (2013) mirTools 2.0 for non-coding RNA discovery, profiling, and functional annotation based on high-throughput sequencing. RNA Biol 10:1087–1092

    CAS  PubMed Central  PubMed  Google Scholar 

  156. Gomes CP, Cho JH, Hood L et al (2013) A review of computational tools in microRNA discovery. Front Genet 4:81

    PubMed Central  PubMed  Google Scholar 

  157. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    PubMed Central  PubMed  Google Scholar 

  158. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    CAS  PubMed Central  PubMed  Google Scholar 

  159. Li R, Li Y, Kristiansen K, Wang J (2008) SOAP: short oligonucleotide alignment program. Bioinformatics 24:713–714

    CAS  PubMed  Google Scholar 

  160. Li R, Yu C, Li Y et al (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25:1966–1967

    CAS  PubMed  Google Scholar 

  161. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Eckhard Mandelkow for his encouragement in writing this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenio Fava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Roth, W., Hecker, D., Fava, E. (2016). Systems Biology Approaches to the Study of Biological Networks Underlying Alzheimer’s Disease: Role of miRNAs. In: Castrillo, J., Oliver, S. (eds) Systems Biology of Alzheimer's Disease. Methods in Molecular Biology, vol 1303. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2627-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2627-5_21

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2626-8

  • Online ISBN: 978-1-4939-2627-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics