Skip to main content

Label-Free Cell Phenotypic Profiling and Screening: Techniques, Experimental Design, and Data Assessment

  • Protocol
Label-Free Biosensor Methods in Drug Discovery

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

Label-free biosensors enable novel cell phenotypic assays for drug discovery by providing a holistic view of drug action in native cells. The label-free cellular profiles of drug molecules permit the comprehension of their target(s), potency, efficacy, and safety. This chapter first discusses three essential components of label-free cell phenotypic assays, namely biosensors, cell phenotypes, and assays. Key considerations about experimental design, data quality assessment, and data analysis are then discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cooper MA (2002) Optical biosensors in drug discovery. Nat Rev Drug Discov 1:515–528. doi:10.1038/nrd838

    Article  CAS  PubMed  Google Scholar 

  2. Fang Y (2013) Ligand-receptor interaction platforms and their applications for drug discovery. Exp Rev Drug Discov 7:969–988. doi:10.1517/17460441.2012.715631

    Article  Google Scholar 

  3. Nunez S, Venhorst J, Kruse CG (2012) Target-drug interactions: first principles and their application to drug discovery. Drug Discov Today 17:10–22. doi:10.1016/j.drudis.2011.06.013

    Article  CAS  PubMed  Google Scholar 

  4. Swinney DC (2004) Biochemical mechanisms of drug action: what does it take for success? Nat Rev Drug Discov 3:801–808. doi:10.1038/nrd1500

    Article  CAS  PubMed  Google Scholar 

  5. Copeland RA, Pompliano DL, Meek TD (2006) Drug-target residence time and its implications for lead optimization. Nat Rev Drug Discov 5:730–739. doi:10.1038/nrd2082

    Article  CAS  PubMed  Google Scholar 

  6. Fang Y (2006) Label-free cell-based assays with optical biosensors in drug discovery. Assay Drug Dev Technol 4:583–595. doi:10.1089/adt.2006.4.583

    Article  CAS  PubMed  Google Scholar 

  7. Rocheville M, Jerman JC (2009) 7TM pharmacology measured by label-free: a holistic approach to cell signalling. Curr Opin Pharmacol 9:643–649. doi:10.1016/j.coph.2009.06.015

    Article  CAS  PubMed  Google Scholar 

  8. Rocheville M, Martin J, Jerman J, Kostenis E (2013) Mining the potential of label-free biosensors for seven-transmembrane receptor drug discovery. Prog Mol Biol Transl Sci 115:123–42.  doi:10.1016/B978-0-12-394587-7.00003-8

    Article  CAS  PubMed  Google Scholar 

  9. Fang Y (2011) The development of label-free cellular assays for drug discovery. Exp Opin Drug Discov 6:1285–1298. doi:10.1517/17460441.2012.715631

    Article  CAS  Google Scholar 

  10. Fang Y (2013) Troubleshooting and deconvoluting label-free cell phenotypic assays in drug discovery. J Pharmacol Tox Methods 67:69–81. doi:10.1016/j.vascn.2013.01.004

    Article  CAS  Google Scholar 

  11. McGuinness R (2007) Impedance-based cellular assay technologies: recent advances, future promise. Curr Opin Pharmacol 7:535–540. doi:10.1016/j.coph.2007.08.004

    Article  CAS  PubMed  Google Scholar 

  12. Fang Y, Ferrie AM, Fontaine NH, Mauro J, Balakrishnan J (2006) Resonant waveguide grating biosensor for living cell sensing. Biophys J 91:1925–1940. doi:10.1529/biophysj.105.077818

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Shamah SM, Cunningham BT (2011) Label-free cell-based assays using photonic crystal optical biosensors. Analyst 136(6):1090–1102. doi:10.1039/c0an00899k

    Article  CAS  PubMed  Google Scholar 

  14. Aref A, Horvath R, McColl J, Ramsden JJ (2009) Optical monitoring of stem cell-substratum interactions. J Biomed Opt 14:010501. doi:10.1117/1.3065541

    Article  PubMed  Google Scholar 

  15. Ferrie AM, Deichmann OD, Wu Q, Fang Y (2012) High resolution resonant waveguide grating imager for cell cluster analysis under physiological condition. Appl Phys Lett 100:223701. doi:10.1063/1.4723691

    Article  Google Scholar 

  16. Febles NK, Ferrie AM, Fang Y (2014) Label-free single cell quantification of the invasion of spheroidal colon cancer cells through 3D Matrigel. Anal Chem 86:8842–8849. doi:10.1021/ac502269v

    Article  CAS  PubMed  Google Scholar 

  17. Ferrie AM, Wu Q, Deichmann O, Fang Y (2014) High frequency resonant waveguide grating imager for assessing drug-induced cardiotoxicity. Appl Phys Lett 104:183702. doi:10.1063/1.4876095

    Article  Google Scholar 

  18. Hide M, Tsutsui T, Sato H, Nishimura T, Morimoto K, Yamamoto S, Yoshizato K (2002) Real-time analysis of ligand-induced cell surface and intracellular reactions of living mast cells using a surface plasmon resonance-based biosensor. Anal Biochem 302:28–37. doi:10.1006/abio.2001.5535

    Article  CAS  PubMed  Google Scholar 

  19. Bourassa P, Tudashki HB, Pineyro G, Grandbois M, Gendron L (2014) Label-free monitoring of μ-opioid receptor-mediated signaling. Mol Pharmacol 86:138–149. doi:10.1124/mol.114.093450

    Article  CAS  PubMed  Google Scholar 

  20. Yashunsky V, Lirtsman V, Golosovsky M, Davidov D, Aroeti B (2010) Real-time monitoring of epithelial cell-cell and cell-substrate interactions by infrared surface plasmon spectroscopy. Biophys J 99:4028–4036. doi:10.1016/j.bpj.2010.10.017

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Chen JY, Shahid A, Garcia MP, Penn LS, Xi J (2012) Dissipation monitoring for assessing EGF-induced changes of cell adhesion. Biosens Bioelectron 38:375–381. doi:10.1016/j.bios.2012.06.018

    Article  PubMed  Google Scholar 

  22. Saitakis M, Gizeli E (2012) Acoustic sensors as a biophysical tool for probing cell attachment and cell/surface interactions. Cell Mol Life Sci 69(3):357–371. doi:10.1007/s00018-011-0854-8

    Article  CAS  PubMed  Google Scholar 

  23. Ding X, Lin S-C, Lapsley M, Li S, Guo X, Chan CYK, Chiang I-K, Wang L, McCoy JP, Huang TJ (2012) Standing surface acoustic wave (SSAW) based multichannel cell sorting. Lab Chip 12:4228–4231. doi:10.1039/c2lc40751e

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Ahmed D, Muddana H, Lu M, French J, Ozcelik A, Fang Y, Butler P, Benkovic S, Manz A, Huang TJ (2014) Acoustofluidic chemical waveform generator and switch. Anal Chem 86(23):11803–11810. doi:10.1021/ac5033676

    Article  CAS  PubMed  Google Scholar 

  25. Hennen S, Wang H, Peters L, Merten N, Simon K, Spinrath A, Blättermann S, Akkari R, Schrage R, Schröder R, Schulz D, Vermeiren C, Zimmermann K, Kehraus S, Drewke C, Pfeifer A, König GM, Mohr K, Gillard M, Müller CE, Lu QR, Gomeza J, Kostenis E (2013) Decoding signaling and function of the orphan G protein-coupled receptor GPR17 with a small-molecule agonist. Sci Signal 6:ra93. doi:10.1126/scisignal.2004350

    Article  PubMed Central  PubMed  Google Scholar 

  26. Bagnaninchi PO, Drummond N (2011) Real-time label-free monitoring of adipose-derived stem cell differentiation with electric cell-substrate impedance sensing. Proc Natl Acad Sci U S A 108:6462–6467. doi:10.1073/pnas.1018260108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Pai S, Verrier F, Sun H, Hu H, Ferrie AM, Eshraghi A, Fang Y (2012) Dynamic mass redistribution assay decodes differentiation of a neural progenitor stem cell. J Biomol Screen 17:1180–1191. doi:10.1177/1087057112455059

    Article  PubMed  Google Scholar 

  28. Carter RL, Grisanti LA, Yu JE, Repas AA, Woodall M, Ibetti J, Koch WJ, Jacobson MA, Tilley DG (2014) Dynamic mass redistribution analysis of endogenous β-adrenergic receptor signaling in neonatal rat cardiac fibroblasts. Pharmacol Res Perspect 2:24. doi:10.1002/prp2.24

    Article  Google Scholar 

  29. Zhang X, Deng H, Xiao Y, Xue X, Ferrie AM, Tran E, Liang X, Fang Y (2014) Label-free cell phenotypic profiling identifies pharmacologically active compounds in two traditional Chinese medicinal plants. RSC Advances 4:26368–26377. doi:10.1039/C4RA03609C

    Article  CAS  Google Scholar 

  30. Sun H, Wei Y, Xiong Q, Li M, Lahiri J, Fang Y (2014) Label-free cell phenotypic profiling decodes the composition and signaling of an endogenous ATP-sensitive potassium channel. Sci Rep 4:4934. doi:10.1038/srep04934

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Fang Y (2014) Label-free drug discovery. Front Pharmacol 5:52. doi:10.3389/fphar.2014.00052

    Article  PubMed Central  PubMed  Google Scholar 

  32. Shoemaker RH (2006) The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer 6:813–823. doi:10.1038/nrc1951

    Article  CAS  PubMed  Google Scholar 

  33. Garnett MJ, Edelman EJ, Heidorn SJ, Greenman CD, Dastur A, Lau KW (2012) Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 483:570–575. doi:10.1038/nature11005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S et al (2012) The cancer cell line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483:603–607. doi:10.1038/nature11003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Fang Y (2011) Label-free biosensors for cell biology. Intl J Electrochem 2011:e460850. doi:10.4061/2011/460850

    Article  Google Scholar 

  36. Fang Y (2014) Label-free cell phenotypic drug discovery. Comb Chem High Throughput Screen 17:566–578. doi:10.2174/1386207317666140211100000

    Article  CAS  PubMed  Google Scholar 

  37. Hoehndorf R, Harris MA, Herre H, Rustici G, Gkoutos GV (2012) Semantic integration of physiology phenotypes with an application to the cellular phenotype ontology. Bioinformatics 28:1783–1789. doi:10.1093/bioinformatics/bts250

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Wong S-H, Gao A, Ward S, Henley C, Lee PH (2012) Development of a label-free assay for sodium-dependent phosphate transporter NaPi-IIb. J Biomol Screen 17:829–834. doi:10.1177/1087057112442961

    Article  CAS  PubMed  Google Scholar 

  39. Goral V, Wu Q, Sun H, Fang Y (2011) Label-free optical biosensor with microfluidics for sensing ligand-directed functional selectivity on trafficking of thrombin receptor. FEBS Lett 585:1054–1060. doi:10.1016/j.febslet.2011.03.003

    Article  CAS  PubMed  Google Scholar 

  40. Goral V, Jin Y, Sun H, Ferrie AM, Wu Q, Fang Y (2011) Agonist-directed desensitization of the β2-adrenergic receptor. PLoS One 6:e19282. doi:10.1371/journal.pone.0019282

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Deng H, Wang C, Su M, Fang Y (2012) Probing biochemical mechanisms of action of muscarinic M3 receptor antagonists with label-free whole-cell assays. Anal Chem 84:8232–8239. doi:10.1021/ac301495n

    Article  CAS  PubMed  Google Scholar 

  42. Ferrie AM, Wang C, Deng H, Fang Y (2013) Label-free optical biosensor with microfluidics identifies an intracellular signalling wave mediated through the β2-adrenergic receptor. Integr Biol 5:1253–1261. doi:10.1039/c3ib40112j

    Article  CAS  Google Scholar 

  43. Deng H, Wang C, Fang Y (2013) Label-free cell phenotypic assessment of the molecular mechanism of action of epidermal growth factor receptor inhibitors. RSC Advances 3:10370–10378. doi:10.1039/C3RA40426A

    Article  CAS  Google Scholar 

  44. Sen S, Kumar S (2010) Combining mechanical and optical approaches to dissect cellular mechanobiology. J Biomechanics 43:45–54. doi:10.1016/j.jbiomech.2009.09.008

    Article  Google Scholar 

  45. Kenakin T (2009) Cellular assays as portals to seven-transmembrane receptor-based drug discovery. Nat Rev Drug Discov 8:617–626. doi:10.1038/nrd2838

    Article  CAS  PubMed  Google Scholar 

  46. Orgovan N, Peter B, Bősze S, Ramsden JJ, Szabó B, Horvath R (2014) Dependence of cancer cell adhesion kinetics on integrin ligand surface density measured by a high-throughput label-free resonant waveguide grating biosensor. Sci Rep 4:4034. doi:10.1038/srep04034

    Article  PubMed Central  PubMed  Google Scholar 

  47. Abassi YA, Xi B, Zhang W, Ye P, Kirstein SL, Gaylord MR, Feinstein SC, Wang X, Xu X (2009) Kinetic cell-based morphological screening: prediction of mechanism of compound action and off-target effects. Chem Biol 16:712–723. doi:10.1016/j.chembiol.2009.05.011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Fu H, Fu W, Sun M, Shou Q, Zhai Y, Cheng H, Teng L, Mou X, Li Y, Wan S, Zhang S, Xu Q, Zhang X, Wang J, Zhu J, Wang X, Xu X, Lv G, Jin L, Guo W, Ke Y (2011) Kinetic cellular phenotypic profiling: prediction, identification, and analysis of bioactive natural products. Anal Chem 83:6518–6526. doi:10.1021/ac201670e

    Article  CAS  PubMed  Google Scholar 

  49. Owens RM, Wang C, You JA, Jiambutr J, Xu AS, Marala RB, Jin MM (2009) Real-time quantitation of viral replication and inhibitor potency using a label-free optical biosensor. J Recept Signal Transduct Res 29:195–201. doi:10.1080/10799890903079919

    Article  CAS  PubMed  Google Scholar 

  50. Dodgson K, Gedge L, Murray DC, Coldwell M (2009) A 100K well screen for a muscarinic receptor using the Epic label-free system: a reflection on the benefits of the label-free approach to screening seven-transmembrane receptors. J Recept Signal Transduct Res 29:163–172. doi:10.1080/10799890903079844

    Article  CAS  PubMed  Google Scholar 

  51. Tran E, Fang Y (2008) Duplexed label-free G protein-coupled receptor assays for high throughput screening. J Biomol Screen 13:975–985. doi:10.1177/1087057108326141

    Article  CAS  PubMed  Google Scholar 

  52. Verrier F, An S, Ferrie AM, Sun H, Kyoung M, Deng H, Fang Y, Benkovic S (2011) GPCRs regulate the assembly of a multienzyme complex for purine biosynthesis. Nat Chem Biol 7:909–915. doi:10.1038/nchembio.690

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Gitschier HJ, Bergeron AB, Randle, DH, Bacon CE, Baez M, Yang P, Broad LM, Goldsmith PJ, Felder CC, Schober DA (2015) Triple-addition label-free assays for high throughput screening of agonists, antagonists and allosteric modulators of muscarinic m1 receptor. Methods Pharmacol Tox (Chapter 11). doi: 10.1007/978-1-4939-2617-6_11

  54. Kholodenko BN (2006) Cell signaling dynamics in time and space. Nat Rev Mol Cell Biol 7:165–176. doi:10.1038/nrm1838

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Lohse MJ, Calebiro D (2013) Cell biology: receptor signals come in waves. Nature 495:457–458. doi:10.1038/nature12086

    Article  CAS  PubMed  Google Scholar 

  56. Eastwood BJ, Farmen MW, Iversen PW, Craft TJ, Smallwood JK, Garbison KE, Delapp N, Smith GF (2006) The minimum significant ratio: a statistical parameter to characterize the reproducibility of potency estimates from concentration-response assays and estimation by replicate-experiment studies. J Biomol Screen 11:253–261. doi:10.1177/1087057105285611

    Article  PubMed  Google Scholar 

  57. Zhang J, Chung TDY, Oldenburg KR (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4:67–73. doi:10.1177/108705719900400206

    Article  PubMed  Google Scholar 

  58. Morse M, Tran E, Levension RL, Fang Y (2011) Ligand-directed functional selectivity at the mu opioid receptor revealed by label-free on-target pharmacology. PLoS One 6:e25643. doi:10.1371/journal.pone.0025643

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Morse M, Sun H, Tran E, Levenson R, Fang Y (2013) Label-free integrative pharmacology on-target of opioid ligands at the opioid receptor family. BMC Pharmacol Tox 14:17. doi:10.1186/2050-6511-14-17

    Article  CAS  Google Scholar 

  60. Deng H, Sun H, Fang Y (2013) Label-free cell phenotypic assessment of the biased agonism and efficacy of agonists at the endogenous muscarinic M3 receptors. J Pharmacol Tox Methods 68:323–333. doi:10.1016/j.vascn.2013.07.005

    Article  CAS  Google Scholar 

  61. Onaran HO, Costa T (2012) Where have all the active receptor states gone? Nature Chem Biol 8:674–677. doi:10.1038/nchembio.1024

    Article  CAS  Google Scholar 

  62. Kenakin T (2013) New concepts in pharmacological efficacy at 7TM receptors: IUPHAR review 2. Br J Pharmacol 168:554–575. doi:10.1111/j.1476-5381.2012.02223.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Fang Y, Ferrie AM (2008) Label-free optical biosensor for ligand-directed functional selectivity acting on β2-adrenoceptor in living cells. FEBS Lett 582:558–564. doi:10.1016/j.febslet.2008.01.021

    Article  CAS  PubMed  Google Scholar 

  64. Guo D, Mulder-Krieger T, Ijzerman AP, Heitman LH (2012) Functional efficacy of adenosine A2A receptor agonists is positively correlated to their receptor residence time. Br J Pharmacol 166:1846–1959. doi:10.1111/j.1476-5381.2012.01897.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Fang Y (2010) Label-free receptor assays. Drug Discov Today Technol 7:e5–e11. doi:10.1016/j.ddtec.2010.05.001

    Article  CAS  Google Scholar 

  66. Young DW, Bender A, Hoyt J, McWhinnie E, Chirn GW, Tao CY, Tallarico JA, Labow M, Jenkins JL, Mitchison TJ, Feng Y (2008) Integrating high-content screening and ligand-target prediction to identify mechanism of action. Nat Chem Biol 4:59–68. doi:10.1038/nchembio.2007.53

    Article  CAS  PubMed  Google Scholar 

  67. Schenone M, Dančík V, Wagner BK, Clemons PA (2013) Target identification and mechanism of action in chemical biology and drug discovery. Nat Chem Biol 9:232–240. doi:10.1038/nchembio.1199

    Article  CAS  PubMed  Google Scholar 

  68. Ziegler S, Pries V, Hedberg C, Waldmann H (2013) Target identification for small bioactive molecules: finding the needle in the haystack. Angew Chem Int Ed Engl 52:2744–2792. doi:10.1002/anie.201208749

    Article  CAS  PubMed  Google Scholar 

  69. Ferrie AM, Sun H, Fang Y (2011) Label-free integrative pharmacology on-target of drugs at the β2-adrenergic receptor. Sci Rep 1:33. doi:10.1038/srep00033

    Article  PubMed Central  PubMed  Google Scholar 

  70. Ferrie AM, Sun H, Zaytseva N, Fang Y (2014) Divergent label-free cell phenotypic pharmacology of ligands at the overexpressed β2-adrenergic receptors. Sci Rep 4:3828. doi:10.1038/srep03828

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Fang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Fang, Y. (2015). Label-Free Cell Phenotypic Profiling and Screening: Techniques, Experimental Design, and Data Assessment. In: Fang, Y. (eds) Label-Free Biosensor Methods in Drug Discovery. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2617-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2617-6_2

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2616-9

  • Online ISBN: 978-1-4939-2617-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics