Skip to main content

Pulsed-Field Gel Electrophoresis for Leuconostoc mesenteroides and L. pseudomesenteroides

  • Protocol
  • 1420 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1301))

Abstract

Pulsed-field gel electrophoresis (PFGE) is a technique using alternating electric fields to help the separation of high molecular weight DNA fragments with a high resolution. This method consists of the digestion of bacterial chromosomal DNA with rare-cutting restriction enzymes and of applying an alternating electrical current between spatially distinct pairs of electrodes. DNA molecules migrate at different speeds according to the size of the fragment. This method is considered as the “gold standard” for genotyping, genetic fingerprinting, epidemiological studies, genome size estimation, and studying radiation-induced DNA damage and repair.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hemme D, Foucaud-Scheunemann C (2003) Leuconostoc, characteristics, use in dairy technology and prospects in functional foods. Int Dairy J 14:467–494

    Article  Google Scholar 

  2. Björkroth J, Holzapfel W (2006) Genera Leuconostoc, Oenococcus and Weissella. Prokaryotes 4:267–319

    Article  Google Scholar 

  3. Cibik R, Lepage E, Tailliez P (2000) Molecular diversity of Leuconostoc mesenteroides and Leuconostoc citreum isolated from traditional french cheeses as revealed by RAPD fingerprinting, 16S rDNA sequencing and 16S rDNA fragment amplification. Syst Appl Microbiol 23:267–278

    Article  CAS  PubMed  Google Scholar 

  4. Cardamone L, Quiberoni A, Mercanti DJ, Fornasari ME, Reinheimer JA, Guglielmotti DM et al (2011) Adventitious dairy Leuconostoc strains with interesting technological and biological properties useful for adjunct starters. Dairy Sci Technol 91:457–470

    Article  CAS  Google Scholar 

  5. Hye-Ja L, Sae-Young P, Jeongho K (2000) Multiplex PCR-based detection and identification of Leuconostoc species. FEMS Microbiol Lett 193:243–247

    Article  Google Scholar 

  6. Petri A, Pfannebecker J, Fröhlich J, König H (2013) Fast identification of wine related lactic acid bacteria by multiplex PCR. Food Microbiol 33:48–54

    Article  CAS  PubMed  Google Scholar 

  7. Benmechernene Z, Chentouf HF, Yahia B, Fatima G, Quintela-Baluja M, Calo-Mata P, Barros-Velazquez J (2013) Technological aptitude and applications of Leuconostoc mesenteroides bioactive strains isolated from Algerian raw camel milk. Biomed Res Int. doi:10.1155/2013/418132

    PubMed Central  PubMed  Google Scholar 

  8. Jang J, Kim B, Lee J, Han H (2003) A rapid method for identification of typical Leuconostoc species by 16S rDNA PCR-RFLP analysis. J Microbiol Methods 55:295–302

    Article  CAS  PubMed  Google Scholar 

  9. Villani F, Moschetti G, Blaiotta G, Coppola S (1997) Characterization of strains of Leuconostoc mesenteroides by analysis of soluble whole-cell protein pattern, DNA fingerprinting and restriction of ribosomal DNA. J Appl Microbiol 82:578–588

    Article  CAS  PubMed  Google Scholar 

  10. Bounaix MS, Gabriel V, Robert H, Morel S, Remaud-Siméon M, Gabriel B, Fontagné-Faucher C (2010) Characterization of glucan-producing Leuconostoc strains isolated from sourdough. Int J Food Microbiol 144:1–9

    Article  CAS  PubMed  Google Scholar 

  11. Paramithiotis S, Kouretas K, Drosinos EH (2013) Effect of ripening stage on the development of the microbial community during spontaneous fermentation of green tomatoes. J Sci Food Agric. doi:10.1002/jsfa.6464

    PubMed  Google Scholar 

  12. Plengvidhya V, Breidt F Jr, Fleming HP (2004) Use of RAPD-PCR as a method to follow the progress of starter cultures in sauerkraut fermentation. Int J Food Microbiol 93:287–296

    Article  CAS  PubMed  Google Scholar 

  13. Trias R, Badosa E, Montesinos E, Baneras L (2008) Bioprotective Leuconostoc strains against Listeria monocytogenes in fresh fruits and vegetables. Int J Food Microbiol 127:91–98

    Article  CAS  PubMed  Google Scholar 

  14. Nieto-Arribas P, Sesena S, Poveda JM, Palop L, Cabezas L (2010) Genotypic and technological characterization of Leuconostoc isolates to be used as adjunct starters in Manchego cheese manufacture. Food Microbiol 27:85–93

    Article  CAS  PubMed  Google Scholar 

  15. Pogacic T, Chuat V, Madec MN, Dubravka S, Lortal S, Valence F (2014) Phenotypic traits of genetically closely related Leuconostoc spp. Int Dairy J 39:96–101

    Article  CAS  Google Scholar 

  16. Sanchez JI, Martinez B, Rodriguez A (2005) Rational selection of Leuconostoc strains for mixed starters based on the physiological biodiversity found in raw milk fermentations. Int J Food Microbiol 105:377–387

    Article  CAS  PubMed  Google Scholar 

  17. Kahala M, Mäki M, Lehtovaara A, Tapanainen JM, Joutsjoki V (2005) Leuconostoc strains unable to split a lactose analogue revealed by characterization of mesophilic dairy starters. Food Technol Biotechnol 43:207–209

    Google Scholar 

  18. Schwartz DC, Saffran W, Welsh J, Haas R, Goldenberg M, Cantor CR (1982) New techniques for purifying large DNAs and studying their properties and packaging. Cold Spring Harb Symp Quant Biol 47:189–195

    Article  CAS  Google Scholar 

  19. Basim E, Basim H (2001) Pulsed-Field Gel Electrophoresis (PFGE) technique and its use in molecular biology. Turk J Biol 25:405–418

    CAS  Google Scholar 

  20. Kahala M, Mäki M, Lehtovaara A, Tapanainen JM, Katiska R, Juuruskorpi M, Juhola J, Joutsjoki V (2008) Characterization of starter lactic acid bacteria from the Finnish fermented milk product viili. J Appl Microbiol 105:1929–1938

    Article  CAS  PubMed  Google Scholar 

  21. Kelly WJ, Asmundson RV, Harrison GL, Huang CM (1994) Differentiation of dextran-producing Leuconostoc strains from fermented rice cake (puto) using pulsed-field gel electrophoresis. Int J Food Microbiol 26:345–352

    Article  Google Scholar 

Download references

Acknowledgments

This research has received funding from the European Community’s Seventh Framework Programme (FP7, 2007–2013), Research Infrastructures action, under the grant agreement No. FP7-228310 (EMbaRC project). The authors would like to thank Dr. Tomislav Pogacic for providing some of the Leuconostoc strains used in this EMbaRC project work, which contributed greatly to the development of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria Chuat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Chuat, V., Dalmasso, M. (2015). Pulsed-Field Gel Electrophoresis for Leuconostoc mesenteroides and L. pseudomesenteroides . In: Jordan, K., Dalmasso, M. (eds) Pulse Field Gel Electrophoresis. Methods in Molecular Biology, vol 1301. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2599-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2599-5_19

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2598-8

  • Online ISBN: 978-1-4939-2599-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics