Skip to main content

Analyzing the Dynamics of DNA Replication in Mammalian Cells Using DNA Combing

  • Protocol
DNA Replication

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1300))

Abstract

How cells duplicate their chromosomes is a key determinant of cell identity and genome stability. DNA replication can initiate from more than 100,000 sites distributed along mammalian chromosomes, yet a given cell uses only a subset of these origins due to inefficient origin activation and regulation by developmental or environmental cues. An impractical consequence of cell-to-cell variations in origin firing is that population-based techniques do not accurately describe how chromosomes are replicated in single cells. DNA combing is a biophysical DNA fiber stretching method which permits visualization of ongoing DNA synthesis along Mb-sized single-DNA molecules purified from cells that were previously pulse-labeled with thymidine analogues. This allows quantitative measurements of several salient features of chromosome replication dynamics, such as fork velocity, fork asymmetry, inter-origin distances, and global instant fork density. In this chapter we describe how to obtain this information from asynchronous cultures of mammalian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zlatanova J, van Holde K (2006) Single-molecule biology: what is it and how does it work? Mol Cell 24:317–329

    Article  CAS  PubMed  Google Scholar 

  2. Bancaud A, Conde e Silva N, Barbi M, Wagner G, Allemand JF, Mozziconacci J, Lavelle C, Croquette V, Victor JM, Prunell A, Viovy JL (2006) Structural plasticity of single chromatin fibers revealed by torsional manipulation. Nat Struct Mol Biol 13:444–450

    Article  CAS  PubMed  Google Scholar 

  3. Lia G, Praly E, Ferreira H, Stockdale C, Tse-Dinh YC, Dunlap D, Croquette V, Bensimon D, Owen-Hughes T (2006) Direct observation of DNA distortion by the RSC complex. Mol Cell 21:417–425

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Strick TR, Croquette V, Bensimon D (2000) Single-molecule analysis of DNA uncoiling by a type II topoisomerase. Nature 404:901–904

    Article  CAS  PubMed  Google Scholar 

  5. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression in a single cell. Science 297:1183–1186

    Article  CAS  PubMed  Google Scholar 

  7. Raser JM, O’Shea EK (2005) Noise in gene expression: origins, consequences, and control. Science 309:2010–2013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Patel PK, Arcangioli B, Baker SP, Bensimon A, Rhind N (2006) DNA replication origins fire stochastically in fission yeast. Mol Biol Cell 17:308–316

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Di Talia S, Skotheim JM, Bean JM, Siggia ED, Cross FR (2007) The effects of molecular noise and size control on variability in the budding yeast cell cycle. Nature 448:947–951

    Article  PubMed  Google Scholar 

  10. Bensimon A, Simon A, Chiffaudel A, Croquette V, Heslot F, Bensimon D (1994) Alignment and sensitive detection of DNA by a moving interface. Science 265:2096–2098

    Article  CAS  PubMed  Google Scholar 

  11. Michalet X, Ekong R, Fougerousse F, Rousseaux S, Schurra C, Hornigold N, van Slegtenhorst M, Wolfe J, Povey S, Beckmann JS, Bensimon A (1997) Dynamic molecular combing: stretching the whole human genome for high- resolution studies. Science 277:1518–1523

    Article  CAS  PubMed  Google Scholar 

  12. Allemand JF, Bensimon D, Jullien L, Bensimon A, Croquette V (1997) pH-dependent specific binding and combing of DNA. Biophys J 73:2064–2070

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Jung GY, Li Z, Wu W, Chen Y, Olynick DL, Wang SY, Tong WM, Williams RS (2005) Vapor-phase self-assembled monolayer for improved mold release in nanoimprint lithography. Langmuir 21:1158–1161

    Article  CAS  PubMed  Google Scholar 

  14. Bunker BC, Carpick RW, Assink RA, Thomas ML, Hankins MG, Voigt JA, Sipola D, de Boer MP, Gulley GL (2000) The impact of solution agglomeration on the deposition of self-assembled monolayers. Langmuir 16:7742–7751

    Article  CAS  Google Scholar 

  15. Schwob E, de Renty C, Coulon V, Gostan T, Boyer C, Camet-Gabut L, Amato C (2009) Use of DNA combing for studying DNA replication in vivo in yeast and mammalian cells. Methods Mol Biol 521:673–687

    Article  CAS  PubMed  Google Scholar 

  16. Labit H, Goldar A, Guilbaud G, Douarche C, Hyrien O, Marheineke K (2008) A simple and optimized method of producing silanized surfaces for FISH and replication mapping on combed DNA fibers. Biotechniques 45:649–658

    Article  CAS  PubMed  Google Scholar 

  17. Dolbeare F (1996) Bromodeoxyuridine: a diagnostic tool in biology and medicine, Part III. Proliferation in normal, injured and diseased tissue, growth factors, differentiation, DNA replication sites and in situ hybridization. Histochem J 28:531–575

    Article  CAS  PubMed  Google Scholar 

  18. Lengronne A, Pasero P, Bensimon A, Schwob E (2001) Monitoring S phase progression globally and locally using BrdU incorporation in TK(+) yeast strains. Nucleic Acids Res 29:1433–1442

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Rhind N (2009) Incorporation of thymidine analogs for studying replication kinetics in fission yeast. Methods Mol Biol 521:509–515

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Salic A, Mitchison TJ (2008) A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc Natl Acad Sci U S A 105:2415–2420

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Bianco JN, Poli J, Saksouk J, Bacal J, Silva MJ, Yoshida K, Lin YL, Tourrière H, Lengronne A, Pasero P (2012) Analysis of DNA replication profiles in budding yeast and mammalian cells using DNA combing. Methods 57:149–157

    Article  CAS  PubMed  Google Scholar 

  22. Técher H, Koundrioukoff S, Azar D, Wilhelm T, Carignon S, Brison O, Debatisse M, Le Tallec B (2013) Replication dynamics: biases and robustness of DNA fiber analysis. J Mol Biol 425:4845–4855

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The Montpellier DNA combing facility is part of BioCampus Montpellier (www.biocampus.cnrs.fr) and has financial support from Cancéropôle Grand Sud-Ouest, SIRIC Montpellier, Région Languedoc-Roussillon and BioCampus Montpellier. ES acknowledges CNRS, Institut National du Cancer (INCa), Fondation pour la Recherche Médicale (FRM), and Association pour la Recherche sur le Cancer (ARC) for funding. MB has a Ph.D. fellowship from the Ministry of Research (MENRT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etienne Schwob .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bialic, M., Coulon, V., Drac, M., Gostan, T., Schwob, E. (2015). Analyzing the Dynamics of DNA Replication in Mammalian Cells Using DNA Combing. In: Vengrova, S., Dalgaard, J. (eds) DNA Replication. Methods in Molecular Biology, vol 1300. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2596-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2596-4_4

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2595-7

  • Online ISBN: 978-1-4939-2596-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics