Skip to main content

Methods of Myofibrillogenesis Modeling

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1299))

Abstract

Organization in the heart is important on multiple length scales. Myofibrillogenesis processes control the assembly of this multi-scale architecture. Understanding myofibrillogenesis might allow us to better control self-assembly of cardiac tissues. One approach consists of creating phenomenological models and comparing these models to in vitro data from primary myocytes. In this chapter, we present a method for building these models to recapitulate different aspects of myofibrillogenesis. We present a specific example for a cardiomyocyte model, but the same procedure can be used to model fibrillogenesis with other mechanisms such as motility. In sum, the models allow for a better understanding of mechanisms behind self-assembly.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 4th edn. Garland, New York

    Google Scholar 

  2. Feinberg AW, Alford PW, Jin H, Ripplinger CM, Werdich AA, Sheehy SP, Grosberg A, Parker KK (2012) Controlling the contractile strength of engineered cardiac muscle by hierarchal tissue architecture. Biomaterials 33:5732–5741. doi:10.1016/j.biomaterials.2012.04.043

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Chen JJ, Liu W, Zhang HY, Lacy L, Yang XX, Song SK, Wickline SA, Yu X (2005) Regional ventricular wall thickening reflects changes in cardiac fiber and sheet structure during contraction: quantification with diffusion tensor MRI. Am J Physiol Heart Circ Physiol 289(5):H1898–H1907

    Article  CAS  PubMed  Google Scholar 

  4. Sheehy SP, Grosberg A, Parker KK (2012) The contribution of cellular mechanotransduction to cardiomyocyte form and function. Biomech Model Mechanobiol 11(8):1227–1239. doi:10.1007/s10237-012-0419-2

    Article  PubMed Central  PubMed  Google Scholar 

  5. Bray MA, Sheehy SP, Parker KK (2008) Sarcomere alignment is regulated by myocyte shape. Cell Motil Cytoskeleton 65(8):641–651. doi:10.1002/cm.20290

    Article  PubMed  Google Scholar 

  6. Ivaska J (2012) Unanchoring integrins in focal adhesions. Nat Cell Biol 14(10):981–983

    Article  CAS  PubMed  Google Scholar 

  7. Dabiri GA, Turnacioglu KK, Sanger JM, Sanger JW (1997) Myofibrillogenesis visualized in living embryonic cardiomyocytes. Proc Natl Acad Sci U S A 94(17):9493–9498

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. McCain ML, Sheehy SP, Grosberg A, Goss JA, Parker KK (2013) Recapitulating maladaptive, multiscale remodeling of failing myocardium on a chip. Proc Natl Acad Sci U S A 110(24):9770–9775. doi:10.1073/pnas.1304913110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Hotulainen P, Lappalainen P (2006) Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. J Cell Biol 173(3):383–394. doi:10.1083/jcb.200511093

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Robinton DA, Daley GQ (2012) The promise of induced pluripotent stem cells in research and therapy. Nature 481(7381):295–305. doi:10.1038/nature10761

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Cirit M, Krajcovic M, Choi CK, Welf ES, Horwitz AF, Haugh JM (2010) Stochastic model of integrin-mediated signaling and adhesion dynamics at the leading edges of migrating cells. PLoS Comput Biol 6(2):e1000688. doi:10.1371/journal.pcbi.1000688

    Article  PubMed Central  PubMed  Google Scholar 

  12. Maree AFM, Grieneisen VA, Edelstein-Keshet L (2012) How cells integrate complex stimuli: the effect of feedback from phosphoinositides and cell shape on cell polarization and motility. PLoS Comput Biol 8(3):e1002402. doi:10.1371/journal.pcbi.1002402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Dayel MJ, Akin O, Landeryou M, Risca V, Mogilner A, Mullins RD (2009) In silico reconstitution of actin-based symmetry breaking and motility. PLoS Biol 7(9):e1000201. doi:10.1371/journal.pbio.1000201

    Article  PubMed Central  PubMed  Google Scholar 

  14. Novak IL, Slepchenko BM, Mogilner A, Loew LM (2004) Cooperativity between cell contractility and adhesion. Phys Rev Lett 93(26 Pt 1):268109

    Article  PubMed  Google Scholar 

  15. Deshpande VS, McMeeking RM, Evans AG (2006) A bio-chemo-mechanical model for cell contractility. Proc Natl Acad Sci U S A 103(45):17065. doi:10.1073/pnas.0605837103

    CAS  Google Scholar 

  16. Deshpande VS, Mrksich M, McMeeking RM, Evans AG (2008) A bio-mechanical model for coupling cell contractility with focal adhesion formation. J Mech Phys Solids 56(4):1484–1510. doi:10.1016/j.jmps.2007.08.006

    Article  CAS  Google Scholar 

  17. Paszek MJ, Boettiger D, Weaver VM, Hammer DA (2009) Integrin clustering is driven by mechanical resistance from the glycocalyx and the substrate. PLoS Comput Biol 5(12):e1000604. doi:10.1371/journal.pcbi.1000604

    Article  PubMed Central  PubMed  Google Scholar 

  18. Grosberg A, Kuo PL, Guo CL, Geisse NA, Bray MA, Adams WJ, Sheehy SP, Parker KK (2011) Self-organization of muscle cell structure and function. PLoS Comput Biol 7(2):e1001088. doi:10.1371/journal.pcbi.1001088

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Rhee D, Sanger JM, Sanger JW (1994) The premyofibril—evidence for its role in myofibrillogenesis. Cell Motil Cytoskeleton 28(1):1–24

    Article  CAS  PubMed  Google Scholar 

  20. Love AEH (1927) A treatise on the mathematical theory of elasticity, 4th edn. Cambridge University Eng. Press, Cambridge

    Google Scholar 

  21. Umeno A, Ueno S (2003) Quantitative analysis of adherent cell orientation influenced by strong magnetic fields. IEEE Trans Nanobiosci 2(1):26–28. doi:10.1109/tnb.2003.810157

    Article  Google Scholar 

  22. Balaban NQ, Schwarz US, Riveline D, Goichberg P, Tzur G, Sabanay I, Mahalu D, Safran S, Bershadsky A, Addadi L, Geiger B (2001) Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat Cell Biol 3(5):466–472

    Article  CAS  PubMed  Google Scholar 

  23. McKenna NM, Wang YL (1986) Possible translocation of actin and alpha-actinin along stress fibers. Exp Cell Res 167(1):95–105

    Article  CAS  PubMed  Google Scholar 

  24. Tan JL, Liu W, Nelson CM, Raghavan S, Chen CS (2004) Simple approach to micropattern cells on common culture substrates by tuning substrate wettability. Tissue Eng 10(5–6):865–872

    Article  CAS  PubMed  Google Scholar 

  25. Butler JP, Tolic-Norrelykke IM, Fabry B, Fredberg JJ (2002) Traction fields, moments, and strain energy that cells exert on their surroundings. Am J Physiol Cell Physiol 282(3):C595–C605

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Grosberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Drew, N.K., Grosberg, A. (2015). Methods of Myofibrillogenesis Modeling. In: Skuse, G., Ferran, M. (eds) Cardiomyocytes. Methods in Molecular Biology, vol 1299. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2572-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2572-8_6

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2571-1

  • Online ISBN: 978-1-4939-2572-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics