Skip to main content

Next-Generation Sequencing Technology in the Genetics of Cardiovascular Disease

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1299))

Abstract

In recent years, next-generation sequencing (NGS) technologies have revolutionized approaches to genetic studies, making whole-genome sequencing a possible way for obtaining global genomic information. At present, three most NGS platforms are used in genetics for clonally amplified templates. These technologies share general processing steps but differing in specific technical details that determine their limits or advantages. NGS has been recently shown to have great potential for identifying novel causative mutations in different disorders. It is expected that the NGS will be increasingly important in the study of inherited and complex traits such as cardiovascular diseases (CVDs). Indeed, the identification and characterization of genes that enhance prediction of CVDs risk remain an important challenge for improving prevention and treatment.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Venter JC, Adams MD, Myers EW et al (2001) The sequence of the human genome. Science 291:1304–1351

    Article  CAS  PubMed  Google Scholar 

  2. Clark MJ, Chen R, Lam HY, Karczewski KJ, Euskirchen G, Butte AJ, Snyder M (2011) Performance comparison of exome DNA sequencing technologies. Nat Biotechnol 29:908–914

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Zhang J, Chiodini R, Badr A, Zhang G (2011) The impact of next-generation sequencing on genomics. J Genet Genomics 38:95–109

    Article  PubMed Central  PubMed  Google Scholar 

  4. Su Z, Ning B, Fang H, Hong H, Perkins R, Tong W, Shi L (2011) Next-generation sequencing and its applications in molecular diagnostics. Expert Rev Mol Diagn 11:333–343

    PubMed  Google Scholar 

  5. Faita F, Vecoli C, Foffa I, Andreassi MG (2012) Next generation sequencing in cardiovascular diseases. World J Cardiol 4:288–295

    Article  PubMed Central  PubMed  Google Scholar 

  6. Davey JW, Hohenlohe PA, Etter PD, Boon JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510

    Article  CAS  PubMed  Google Scholar 

  7. Borgstrom E, Lundin S, Lundeberg J (2011) Large scale library generation for high throughput sequencing. PLoS One 6:e19119

    Article  PubMed Central  PubMed  Google Scholar 

  8. McKernan KJ, Peckham HE, Costa GL, McLaughlin SF, Fu Y, Tsung EF, Clouser CR, Duncan C, Ichikawa JK, Lee CC, Zhang Z, Ranade SS, Dimalanta ET, Hyland FC, Sokolsky TD, Zhang L, Sheridan A, Fu H, Hendrickson CL, Li B, Kotler L, Stuart JR, Malek JA, Manning JM, Antipova AA, Perez DS, Moore MP, Hayashibara KC, Lyons MR, Beaudoin RE, Coleman BE, Laptewicz MW, Sannicandro AE, Rhodes MD, Gottimukkala RK, Yang S, Bafna V, Bashir A, MacBride A, Alkan C, Kidd JM, Eichler EE, Reese MG, De La Vega FM, Blanchard AP (2009) Sequence and structural variation in a human genome uncovered by short-read, massively parallel ligation sequencing using two-base encoding. Genome Res 19:1527–1541

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Wheeler DA, Srinivasan M, Egholm M, Shen Y, Chen L, McGuire A, He W, Chen YJ, Makhijani V, Roth GT, Gomes X, Tartaro K, Niazi F, Turcotte CL, Irzyk GP, Lupski JR, Chinault C, Song XZ, Liu Y, Yuan Y, Nazareth L, Qin X, Muzny DM, Margulies M, Weinstock GM, Gibbs RA, Rothberg JM (2008) The complete genome of an individual by massively parallel DNA sequencing. Nature 452:872–876

    Article  CAS  PubMed  Google Scholar 

  10. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer ML, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Leamon JH (2003) A massively parallel PicoTiterPlate based platform for discrete picoliter-scale polymerase chain reactions. Electrophoresis 24:3769–3777

    Article  CAS  PubMed  Google Scholar 

  12. Kim JB, Porreca GJ, Song L, Greenway SC, Gorham JM, Church GM, Seidman CE, Seidman JC (2007) Polony multiplex analysis of gene expression (PMAGE) in mouse hypertrophic cardiomyopathy. Science 316:1481–1484

    Article  CAS  PubMed  Google Scholar 

  13. Quail MA, Kozarewa I, Smith F, Scally A, Stephens PJ, Durbin R, Swerdlow H, Turner DJ (2008) A large genome center’s improvements to the Illumina sequencing system. Nat Methods 5:1005–1010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Bentley DR, Balasubramanian S, Swerdlow HP et al (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456:53–59

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Ruparel H, Bi L, Li Z, Bai X, Kim DH, Turro NJ, Ju J (2005) Design and synthesis of a 30-O-allyl photocleavable fluorescent nucleotide as a reversible terminator for DNA sequencing by synthesis. Proc Natl Acad Sci U S A 102:5932–5937

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Ruffalo M, Laframboise T, Koyuturk M (2011) Comparative analysis of algorithms for next-generation sequencing read alignment. Bioinformatics (Oxford, England) 27:2790–2796

    Article  CAS  Google Scholar 

  17. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas MA, Hanna M, McKenna A, Fennell TJ, Kernytsky AM, Sivachenko AY, Cibulskis K, Gabriel SB, Altshuler D, Daly MJ (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43:491–498

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Bos JM, Towbin JA, Ackerman MJ (2009) Diagnostic, prognostic, and therapeutic implications of genetic testing for hypertrophic cardiomyopathy. J Am Coll Cardiol 54:201–211

    Article  CAS  PubMed  Google Scholar 

  19. Soor GS, Luk A, Ahn E, Abraham JR, Woo A, Ralph-Edwards A, Butany J (2009) Hypertrophic cardiomyopathy: current understanding and treatment objectives. J Clin Pathol 62:226–235

    Article  CAS  PubMed  Google Scholar 

  20. Taylor MR, Carniel E, Mestroni L (2004) Familial hypertrophic cardiomyopathy: clinical features, molecular genetics and molecular genetic testing. Expert Rev Mol Diagn 4:99–113

    Article  CAS  PubMed  Google Scholar 

  21. Rodriguez JE, McCudden CR, Willis MS (2009) Familial hypertrophic cardiomyopathy: basic concepts and future molecular diagnostics. Clin Biochem 42:755–765

    Article  CAS  PubMed  Google Scholar 

  22. Fokstuen S, Lyle R, Munoz A, Gehrig C, Lerch R, Perrot A, Osterziel KJ, Geier C, Beghetti M, Mach F, Sztajzel J, Sigwart U, Antonarakis SE, Blouin JL (2008) A DNA resequencing array for pathogenic mutation detection in hypertrophic cardiomyopathy. Hum Mutat 29:879–885

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was partially funded by a grant from Italian Ministry of Research’s Fund for Basic Research (FIRB 2005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia Vecoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Vecoli, C. (2015). Next-Generation Sequencing Technology in the Genetics of Cardiovascular Disease. In: Skuse, G., Ferran, M. (eds) Cardiomyocytes. Methods in Molecular Biology, vol 1299. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2572-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2572-8_4

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2571-1

  • Online ISBN: 978-1-4939-2572-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics