Skip to main content

Rab-NANOPS: FRET Biosensors for Rab Membrane Nanoclustering and Prenylation Detection in Mammalian Cells

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1298))

Abstract

Rab proteins constitute the largest subfamily of Ras-like small GTPases. They are central to vesicular transport and organelle definition in eukaryotic cells. Unlike their Ras counterparts, they are not a hallmark of cancer. However, a number of diseases, including cancer, show a misregulation of Rab protein activity. As for all membrane-anchored signaling proteins, correct membrane organization is critical for Rabs to operate. In this chapter, we provide a detailed protocol for the use of a flow cytometry-based Fluorescence Resonance Energy Transfer (FRET)-biosensors assay, which allows to detect changes in membrane anchorage, subcellular distribution, and of the nanoscale organization of Rab-GTPases in mammalian cell lines. This assay is high-throughput amenable and can therefore be utilized in chemical-genomic and drug discovery efforts.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    Article  CAS  PubMed  Google Scholar 

  2. Simons K, van Meer G (1988) Lipid sorting in epithelial cells. Biochemistry 27:6197–6202

    Article  CAS  PubMed  Google Scholar 

  3. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572. doi:10.1038/42408

    Article  CAS  PubMed  Google Scholar 

  4. Hancock JF (2006) Lipid rafts: contentious only from simplistic standpoints. Nat Rev Mol Cell Biol 7:456–462. doi:10.1038/nrm1925

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Eggeling C, Ringemann C, Medda R et al (2009) Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457:1159–1162. doi:10.1038/nature07596

    Article  CAS  PubMed  Google Scholar 

  6. Mueller V, Ringemann C, Honigmann A et al (2011) STED Nanoscopy Reveals Molecular Details of Cholesterol- and Cytoskeleton-Modulated Lipid Interactions in Living Cells. Biophys J 101:1651–1660. doi:10.1016/j.bpj.2011.09.006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Varma R, Mayor S (1998) GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 394:798–801. doi:10.1038/29563

    Article  CAS  PubMed  Google Scholar 

  8. Sharma P, Varma R, Sarasij RC et al (2004) Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell 116:577–589

    Article  CAS  PubMed  Google Scholar 

  9. Goswami D, Gowrishankar K, Bilgrami S et al (2008) Nanoclusters of GPI-anchored proteins are formed by cortical actin-driven activity. Cell 135:1085–1097. doi:10.1016/j.cell.2008.11.032

    Article  CAS  PubMed  Google Scholar 

  10. Prior IA, Harding A, Yan J et al (2001) GTP-dependent segregation of H-ras from lipid rafts is required for biological activity. Nat Cell Biol 3:368–375. doi:10.1038/35070050

    Article  CAS  PubMed  Google Scholar 

  11. Parton RG, Hancock JF (2004) Lipid rafts and plasma membrane microorganization: insights from Ras. Trends Cell Biol 14:141–147. doi:10.1016/j.tcb.2004.02.001

    Article  CAS  PubMed  Google Scholar 

  12. Abankwa D, Gorfe AA, Hancock JF (2007) Ras nanoclusters: molecular structure and assembly. Semin Cell Dev Biol 18:599–607. doi:10.1016/j.semcdb.2007.08.003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Plowman SJ, Muncke C, Parton RG, Hancock JF (2005) H-ras, K-ras, and inner plasma membrane raft proteins operate in nanoclusters with differential dependence on the actin cytoskeleton. Proc Natl Acad Sci U S A 102:15500–15505. doi:10.1073/pnas.0504114102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Zhou Y, Liang H, Rodkey T et al (2014) Signal Integration by Lipid-Mediated Spatial Cross Talk between Ras Nanoclusters. Mol Cell Biol 34:862–876. doi:10.1128/MCB. 01227-13

    Article  PubMed Central  PubMed  Google Scholar 

  15. Tian T, Harding A, Inder K et al (2007) Plasma membrane nanoswitches generate high-fidelity Ras signal transduction. Nat Cell Biol 9:905–914. doi:10.1038/ncb1615

    Article  CAS  PubMed  Google Scholar 

  16. Murakoshi H, Iino R, Kobayashi T et al (2004) Single-molecule imaging analysis of Ras activation in living cells. Proc Natl Acad Sci U S A 101:7317–7322. doi:10.1073/pnas.0401354101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Hibino K, Watanabe TM, Kozuka J et al (2003) Single- and Multiple-Molecule Dynamics of the Signaling from H-Ras to cRaf-1 Visualized on the Plasma Membrane of Living Cells. ChemPhysChem 4:748–753. doi:10.1002/cphc.200300731

    Article  CAS  PubMed  Google Scholar 

  18. Guzmán C, Šolman M, Ligabue A et al (2014) The efficacy of Raf kinase recruitment to the GTPase H-ras depends on H-ras membrane conformer specific nanoclustering. J Biol Chem. doi:10.1074/jbc.M113.537001

    Google Scholar 

  19. Prior IA, Muncke C, Parton RG, Hancock JF (2003) Direct visualization of Ras proteins in spatially distinct cell surface microdomains. J Cell Biol 160:165–170. doi:10.1083/jcb.200209091

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Rotblat B, Belanis L, Liang H et al (2010) H-Ras nanocluster stability regulates the magnitude of MAPK signal output. PLoS One 5:e11991. doi:10.1371/journal.pone.0011991

    Article  PubMed Central  PubMed  Google Scholar 

  21. Belanis L, Plowman SJ, Rotblat B et al (2008) Galectin-1 is a novel structural component and a major regulator of H-Ras nanoclusters. Mol Biol Cell 19:1404–1414. doi:10.1091/mbc.E07-10-1053

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Shalom-Feuerstein R, Plowman SJ, Rotblat B et al (2008) K-ras nanoclustering is subverted by overexpression of the scaffold protein galectin-3. Cancer Res 68:6608–6616. doi:10.1158/0008-5472.CAN-08-1117

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Cho K-J, Kasai RS, Park J-H et al (2012) Raf inhibitors target ras spatiotemporal dynamics. Curr Biol 22:945–955. doi:10.1016/j.cub.2012.03.067

    Article  CAS  PubMed  Google Scholar 

  24. Abankwa D, Hanzal-Bayer M, Ariotti N et al (2008) A novel switch region regulates H-ras membrane orientation and signal output. EMBO J 27:727–735. doi:10.1038/emboj.2008.10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Köhnke M, Schmitt S, Ariotti N et al (2012) Design and Application of In Vivo FRET Biosensors to Identify Protein Prenylation and Nanoclustering Inhibitors. Chem Biol 19:866–874. doi:10.1016/j.chembiol.2012.05.019

    Article  PubMed  Google Scholar 

  26. Cho K-J, Park J-H, Piggott AM et al (2012) Staurosporines disrupt phosphatidylserine trafficking and mislocalize Ras proteins. J Biol Chem 287:43573–43584. doi:10.1074/jbc.M112.424457

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Zhou Y, Plowman SJ, Lichtenberger LM, Hancock JF (2010) The Anti-inflammatory Drug Indomethacin Alters Nanoclustering in Synthetic and Cell Plasma Membranes. J Biol Chem 285:35188–35195. doi:10.1074/jbc.M110.141200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Zhou Y, Cho K-J, Plowman SJ, Hancock JF (2012) Nonsteroidal anti-inflammatory drugs alter the spatiotemporal organization of Ras proteins on the plasma membrane. J Biol Chem 287:16586–16595. doi:10.1074/jbc.M112.348490

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Abankwa D, Vogel H (2007) A FRET map of membrane anchors suggests distinct microdomains of heterotrimeric G proteins. J Cell Sci 120:2953–2962. doi:10.1242/jcs.001404

    Article  CAS  PubMed  Google Scholar 

  30. Crouthamel M, Abankwa D, Zhang L et al (2010) An N-terminal polybasic motif of Gαq is required for signaling and influences membrane nanodomain distribution. Mol Pharmacol 78:767–777. doi:10.1124/mol.110.066340

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Najumudeen AK, Köhnke M, Šolman M et al (2013) Cellular FRET-Biosensors to Detect Membrane Targeting Inhibitors of N-Myristoylated Proteins. PLoS One 8:e66425. doi:10.1371/journal.pone.0066425.s007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Goody RS, Rak A, Alexandrov K (2005) The structural and mechanistic basis for recycling of Rab proteins between membrane compartments. Cell Mol Life Sci 62:1657–1670. doi:10.1007/s00018-005-4486-8

    Article  CAS  PubMed  Google Scholar 

  33. Nguyen UT, Goodall A, Alexandrov K, Abankwa D (2010) Isoprenoid Modifications. In: Vidal CJ (ed) Post-Translational Modifications in Health and Disease, 1st edn. Springer, New York, p 486

    Google Scholar 

  34. Alexandrov K, Horiuchi H, Steele-Mortimer O et al (1994) Rab escort protein-1 is a multifunctional protein that accompanies newly prenylated rab proteins to their target membranes. EMBO J 13:5262–5273

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Li F, Yi L, Zhao L et al (2014) The role of the hypervariable C-terminal domain in Rab GTPases membrane targeting. Proc Natl Acad Sci U S A 111:2572–2577. doi:10.1073/pnas.1313655111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Seabra MC, Mules EH, Hume AN (2002) Rab GTPases, intracellular traffic and disease. Trends Mol Med 8:23–30

    Article  CAS  PubMed  Google Scholar 

  37. Recchi C, Seabra MC (2012) Novel functions for Rab GTPases in multiple aspects of tumour progression. Biochem Soc Trans 40:1398–1403. doi:10.1016/S1471-4914(01)02227-4

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Baron RA, Tavaré R, Figueiredo AC et al (2009) Phosphonocarboxylates inhibit the second geranylgeranyl addition by Rab geranylgeranyl transferase. J Biol Chem 284:6861–6868. doi:10.1074/jbc.M806952200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Lackner MR, Kindt RM, Carroll PM et al (2005) Chemical genetics identifies Rab geranylgeranyl transferase as an apoptotic target of farnesyl transferase inhibitors. Cancer Cell 7:325–336. doi:10.1016/j.ccr.2005.03.024

    Article  CAS  PubMed  Google Scholar 

  40. Coxon FP, Ebetino FH, Mules EH et al (2005) Phosphonocarboxylate inhibitors of Rab geranylgeranyl transferase disrupt the prenylation and membrane localization of Rab proteins in osteoclasts in vitro and in vivo. Bone 37:349–358. doi:10.1016/j.bone.2005.04.021

    Article  CAS  PubMed  Google Scholar 

  41. Bon RS, Guo Z, Stigter EA et al (2011) Structure-Guided Development of Selective RabGGTase Inhibitors. Angew Chem Int Ed 50:4957–4961. doi:10.1002/anie.201101210

    Article  CAS  Google Scholar 

  42. Watanabe M, Fiji HDG, Guo L et al (2008) Inhibitors of protein geranylgeranyltransferase I and Rab geranylgeranyltransferase identified from a library of allenoate-derived compounds. J Biol Chem 283:9571–9579. doi:10.1074/jbc.M706229200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Prior IA, Parton RG, Hancock JF (2003) Observing cell surface signaling domains using electron microscopy. Sci STKE 2003:PL9

    PubMed  Google Scholar 

  44. Zimet DB, Thevenin BJ, Verkman AS et al (1995) Calculation of resonance energy transfer in crowded biological membranes. Biophys J 68:1592–1603. doi:10.1016/S0006-3495(95)80332-2

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Berney C, Danuser G (2003) FRET or no FRET: A quantitative comparison. Biophys J 84:3992–4010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Wolber PK, Hudson BS (1979) An analytic solution to the Förster energy transfer problem in two dimensions. Biophys J 28:197–210

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Gordon GW, Berry G, Liang XH et al (1998) Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophys J 74:2702

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Zacharias DA, Violin JD, Newton AC, Tsien RY (2002) Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296:913–916

    Article  CAS  PubMed  Google Scholar 

  49. Zhang J, Campbell RE, Ting AY, Tsien RY (2002) Creating new fluorescent probes for cell biology. Nat Rev Mol Cell Biol 3:906–918. doi:10.1038/nrm976

    Article  CAS  PubMed  Google Scholar 

  50. Griesbeck O, Baird GS, Campbell RE et al (2001) Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J Biol Chem 276:29188–29194. doi:10.1074/jbc.M102815200

    Article  CAS  PubMed  Google Scholar 

  51. Coxon FP, Helfrich MH, Larijani B et al (2001) Identification of a novel phosphonocarboxylate inhibitor of Rab geranylgeranyl transferase that specifically prevents Rab prenylation in osteoclasts and macrophages. J Biol Chem 276:48213–48222. doi:10.1074/jbc.M106473200

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Abankwa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Najumudeen, A.K., Guzmán, C., Posada, I.M.D., Abankwa, D. (2015). Rab-NANOPS: FRET Biosensors for Rab Membrane Nanoclustering and Prenylation Detection in Mammalian Cells. In: Li, G. (eds) Rab GTPases. Methods in Molecular Biology, vol 1298. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2569-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2569-8_3

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2568-1

  • Online ISBN: 978-1-4939-2569-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics