Skip to main content

Identification of the Rab5 Binding Site in p110β: Assays for PI3Kβ Binding to Rab5

  • Protocol
Rab GTPases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1298))

Abstract

Isoform-specific signaling by Class IA PI 3-kinases depends in part on the interactions between distinct catalytic subunits and upstream regulatory proteins. From among the class IA catalytic subunits (p110α, p110β, and p110δ), p110β has unique properties. Unlike the other family members, p110β directly binds to Gβγ subunits, downstream from activated G-protein coupled receptors, and to activated Rab5. Furthermore, the Ras-binding domain (RBD) of p110β binds to Rac and Cdc42 but not to Ras. Defining mutations that specifically disrupt these regulatory interactions is critical for defining their role in p110β signaling. This chapter describes the approach that was used to identify the Rab5 binding site in p110β, and discusses methods for the analysis of p110β-Rab5 interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maier U, Babich A, Nürnberg B (1999) Roles of non-catalytic subunits in Gβγ-induced activation of class I phosphoinositide 3-kinase isoforms beta and gamma. J Biol Chem 274(41):29311–29317

    Article  CAS  PubMed  Google Scholar 

  2. Dbouk HA, Vadas O, Shymanets A, Burke JE, Salamon RS, Khalil BD, Barrett MO, Waldo GL, Surve C, Hsueh C, Perisic O, Harteneck C, Shepherd PR, Harden TK, Smrcka AV, Taussig R, Bresnick AR, Nurnberg B, Williams RL, Backer JM (2012) G protein-coupled receptor-mediated activation of p110beta by Gbetagamma is required for cellular transformation and invasiveness. Sci Signal 5(253):ra89. doi:10.1126/scisignal.2003264

    PubMed Central  PubMed  Google Scholar 

  3. Fritsch R, de Krijger I, Fritsch K, George R, Reason B, Kumar MS, Diefenbacher M, Stamp G, Downward J (2013) RAS and RHO families of GTPases directly regulate distinct phosphoinositide 3-kinase isoforms. Cell 153(5):1050–1063. doi:10.1016/j.cell.2013.04.031

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Christoforidis S, Miaczynska M, Ashman K, Wilm M, Zhao L, Yip SC, Waterfield MD, Backer JM, Zerial M (1999) Phosphatidylinositol-3-OH kinases are Rab5 effectors. Nat Cell Biol 1(4):249–252. doi:10.1038/12075

    Article  CAS  PubMed  Google Scholar 

  5. Zerial M, McBride H (2001) Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2(2):107–117

    Article  CAS  PubMed  Google Scholar 

  6. Horiuchi H, Lippe R, McBride HM, Rubino M, Woodman P, Stenmark H, Rybin V, Wilm M, Ashman K, Mann M, Zerial M (1997) A novel Rab5 GDP/GTP exchange factor complexed to Rabaptin-5 links nucleotide exchange to effector recruitment and function. Cell 90(6):1149–1159

    Article  CAS  PubMed  Google Scholar 

  7. Simonsen A, Lippe R, Christoforidis S, Gaullier JM, Brech A, Callaghan J, Toh BH, Murphy C, Zerial M, Stenmark H (1998) EEA1 links PI(3)K function to Rab5 regulation of endosome fusion. Nature 394(6692):494–498. doi:10.1038/28879

    Article  CAS  PubMed  Google Scholar 

  8. Nielsen E, Christoforidis S, Uttenweiler-Joseph S, Miaczynska M, Dewitte F, Wilm M, Hoflack B, Zerial M (2000) Rabenosyn-5, a novel Rab5 effector, is complexed with hVPS45 and recruited to endosomes through a FYVE finger domain. J Cell Biol 151(3):601–612

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Miaczynska M, Christoforidis S, Giner A, Shevchenko A, Uttenweiler-Joseph S, Habermann B, Wilm M, Parton RG, Zerial M (2004) APPL proteins link Rab5 to nuclear signal transduction via an endosomal compartment. Cell 116(3):445–456

    Article  CAS  PubMed  Google Scholar 

  10. Kurosu H, Katada T (2001) Association of phosphatidylinositol 3-kinase composed of p110β-catalytic and p85-regulatory subunits with the small GTPase Rab5. J Biochem 130(1):73–78

    Article  CAS  PubMed  Google Scholar 

  11. Dbouk HA, Pang H, Fiser A, Backer JM (2010) A biochemical mechanism for the oncogenic potential of the p110beta catalytic subunit of phosphoinositide 3-kinase. Proc Natl Acad Sci U S A 107(46):19897–19902. doi:10.1073/pnas.1008739107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Chamberlain MD, Anderson DH (2005) Measurement of the interaction of the p85alpha subunit of phosphatidylinositol 3-kinase with Rab5. Methods Enzymol 403:541–552. doi:10.1016/S0076-6879(05)03047-8

    Article  CAS  PubMed  Google Scholar 

  13. Dou Z, Pan JA, Dbouk HA, Ballou LM, DeLeon JL, Fan Y, Chen JS, Liang Z, Li G, Backer JM, Lin RZ, Zong WX (2013) Class IA PI3K p110beta subunit promotes autophagy through Rab5 small GTPase in response to growth factor limitation. Mol Cell 50(1):29–42. doi:10.1016/j.molcel.2013.01.022

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Hadano S, Ikeda JE (2005) Purification and functional analyses of ALS2 and its homologue. Methods Enzymol 403:310–321. doi:10.1016/S0076-6879(05)03026-0

    Article  CAS  PubMed  Google Scholar 

  15. Yu J, Zhang Y, McIlroy J, Rordorf-Nikolic T, Orr GA, Backer JM (1998) Regulation of the p85/p110 phosphatidylinositol 3’-kinase: stabilization and inhibition of the p110-alpha catalytic subunit by the p85 regulatory subunit. Mol Cell Biol 18:1379–1387

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Vadas O, Dbouk HA, Shymanets A, Perisic O, Burke JE, Abi Saab WF, Khalil BD, Harteneck C, Bresnick AR, Nurnberg B, Backer JM, Williams RL (2013) Molecular determinants of PI3Kgamma-mediated activation downstream of G-protein-coupled receptors (GPCRs). Proc Natl Acad Sci U S A 110(47):18862–18867. doi:10.1073/pnas.1304801110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Hubbard SJ, Thornton JM (1993) NACCESS. Dept. of Biochemistry and Molecular Biology, University College London, London

    Google Scholar 

  18. Zhang X, Vadas O, Perisic O, Anderson KE, Clark J, Hawkins PT, Stephens LR, Williams RL (2011) Structure of lipid kinase p110beta/p85beta elucidates an unusual SH2-domain-mediated inhibitory mechanism. Mol Cell 41(5):567–578. doi:10.1016/j.molcel.2011.01.026

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonthan M. Backer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Salamon, R.S., Dbouk, H.A., Collado, D., Lopiccolo, J., Bresnick, A.R., Backer, J.M. (2015). Identification of the Rab5 Binding Site in p110β: Assays for PI3Kβ Binding to Rab5. In: Li, G. (eds) Rab GTPases. Methods in Molecular Biology, vol 1298. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2569-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2569-8_23

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2568-1

  • Online ISBN: 978-1-4939-2569-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics