Advertisement

Rab GTPases pp 161-171 | Cite as

Rab Antibody Characterization: Comparison of Rab14 Antibodies

  • Andrew J. Lindsay
  • Mary W. McCaffreyEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1298)

Abstract

Rab14 functions in the endocytic recycling pathway, having been implicated in the trafficking of the ADAM10 protease, GLUT4, and components of cell–cell junctions to the plasma membrane. It localizes predominantly to endocytic membranes with a pool also found on trans-Golgi network (TGN) membranes, and is most closely related to the Rab11 subfamily of GTPases. Certain intracellular bacteria such as Legionella pneumophila, Chlamydia trachomatis, and Salmonella enterica utilize Rab14 to promote their maturation and replication. Furthermore, the HIV envelope glycoprotein complex subverts the function of Rab14, and its effector the Rab Coupling Protein (RCP), in order to direct its transport to the plasma membrane. Since the use of antibodies is critical for the functional characterization of cellular proteins and their specificity and sensitivity is crucial in drawing reliable conclusions, it is important to rigorously characterize antibodies prior to their use in cell biology or biochemistry experiments. This is all the more critical in the case of antibodies raised to a protein which belongs to a protein family. In this chapter, we present our evaluation of the specificity and sensitivity of a number of commercially available Rab14 antibodies. We hope that this analysis provides guidance for researchers for antibody characterization prior to its use in cellular biology or biochemistry.

Key words

Rab14 Antibody characterization Immunofluorescence Intracellular transport Effector 

Notes

Acknowledgements

We would like to thank Jacques Neefjes and Cecilia Bucci for their kind gifts of Rab14 and Rab7 plasmid constructs, respectively. This work was supported by a Science Foundation Ireland Programme Grant (09/IN1/B2629).

References

  1. 1.
    Kelly EE, Horgan CP, Goud B, McCaffrey MW (2012) The Rab family of proteins: 25 years on. Biochem Soc Trans 40(6):1337–1347CrossRefPubMedGoogle Scholar
  2. 2.
    Klopper TH, Kienle N, Fasshauer D, Munro S (2012) Untangling the evolution of Rab G proteins: implications of a comprehensive genomic analysis. BMC Biol 10:71. doi: 10.1186/1741-7007-10-71 CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10(8):513–525CrossRefPubMedGoogle Scholar
  4. 4.
    Elferink LA, Anzai K, Scheller RH (1992) rab15, a novel low molecular weight GTP-binding protein specifically expressed in rat brain. J Biol Chem 267(9):5768–5775PubMedGoogle Scholar
  5. 5.
    Junutula JR, De Maziere AM, Peden AA, Ervin KE, Advani RJ, van Dijk SM, Klumperman J, Scheller RH (2004) Rab14 is involved in membrane trafficking between the Golgi complex and endosomes. Mol Biol Cell 15(5):2218–2229CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Proikas-Cezanne T, Gaugel A, Frickey T, Nordheim A (2006) Rab14 is part of the early endosomal clathrin-coated TGN microdomain. FEBS Lett 580(22):5241–5246CrossRefPubMedGoogle Scholar
  7. 7.
    Lu R, Johnson DL, Stewart L, Waite K, Elliott D, Wilson JM (2014) Rab14 regulation of claudin-2 trafficking modulates epithelial permeability and lumen morphogenesis. Mol Biol Cell 25(11):1744–1754. doi: 10.1091/mbc.E13-12-0724 CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Sadacca LA, Bruno J, Wen J, Xiong W, McGraw TE (2013) Specialized sorting of GLUT4 and its recruitment to the cell surface are independently regulated by distinct Rabs. Mol Biol Cell 24(16):2544–2557. doi: 10.1091/mbc.E13-02-0103 CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Reed SE, Hodgson LR, Song S, May MT, Kelly EE, McCaffrey MW, Mastick CC, Verkade P, Tavare JM (2013) A role for Rab14 in the endocytic trafficking of GLUT4 in 3T3-L1 adipocytes. J Cell Sci 126(Pt 9):1931–1941. doi: 10.1242/jcs.104307 CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Linford A, Yoshimura S, Nunes Bastos R, Langemeyer L, Gerondopoulos A, Rigden DJ, Barr FA (2012) Rab14 and its exchange factor FAM116 link endocytic recycling and adherens junction stability in migrating cells. Dev Cell 22(5):952–966CrossRefPubMedGoogle Scholar
  11. 11.
    Yamamoto H, Koga H, Katoh Y, Takahashi S, Nakayama K, Shin HW (2010) Functional cross-talk between Rab14 and Rab4 through a dual effector, RUFY1/Rabip4. Mol Biol Cell 21(15):2746–2755CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Kuijl C, Pilli M, Alahari SK, Janssen H, Khoo PS, Ervin KE, Calero M, Jonnalagadda S, Scheller RH, Neefjes J, Junutula JR (2013) Rac and Rab GTPases dual effector Nischarin regulates vesicle maturation to facilitate survival of intracellular bacteria. EMBO J 32(5):713–727. doi: 10.1038/emboj.2013.10 CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Kelly EE, Horgan CP, Adams C, Patzer TM, Ni Shuilleabhain DM, Norman JC, McCaffrey MW (2009) Class I Rab11-family interacting proteins are binding targets for the Rab14 GTPase. Biol Cell 102(1):51–62CrossRefPubMedGoogle Scholar
  14. 14.
    Lindsay AJ, Jollivet F, Horgan CP, Khan AR, Raposo G, McCaffrey MW, Goud B (2013) Identification and characterization of multiple novel Rab-myosin Va interactions. Mol Biol Cell 24(21):3420–3434. doi: 10.1091/mbc.E13-05-0236 CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Romano JD, Sonda S, Bergbower E, Smith ME, Coppens I (2013) Toxoplasma gondii salvages sphingolipids from the host Golgi through the rerouting of selected Rab vesicles to the parasitophorous vacuole. Mol Biol Cell 24(12):1974–1995. doi: 10.1091/mbc.E12-11-0827 CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Hoffmann C, Finsel I, Otto A, Pfaffinger G, Rothmeier E, Hecker M, Becher D, Hilbi H (2014) Functional analysis of novel Rab GTPases identified in the proteome of purified Legionella-containing vacuoles from macrophages. Cell Microbiol 16(7):1034–1052. doi: 10.1111/cmi.12256 PubMedGoogle Scholar
  17. 17.
    Capmany A, Damiani MT (2010) Chlamydia trachomatis intercepts Golgi-derived sphingolipids through a Rab14-mediated transport required for bacterial development and replication. PLoS One 5(11):e14084. doi: 10.1371/journal.pone.0014084 CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Qi M, Williams JA, Chu H, Chen X, Wang JJ, Ding L, Akhirome E, Wen X, Lapierre LA, Goldenring JR, Spearman P (2013) Rab11-FIP1C and Rab14 direct plasma membrane sorting and particle incorporation of the HIV-1 envelope glycoprotein complex. PLoS Pathog 9(4):e1003278. doi: 10.1371/journal.ppat.1003278 CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Pereira-Leal JB, Seabra MC (2001) Evolution of the Rab family of small GTP-binding proteins. J Mol Biol 313(4):889–901CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Molecular Cell Biology Laboratory, School of Biochemistry and Cell Biology, Biosciences InstituteUniversity College CorkCorkIreland

Personalised recommendations