Skip to main content

Measuring the Elasticity of Ribonucleotide(s)-Containing DNA Molecules Using AFM

  • Protocol
RNA Nanotechnology and Therapeutics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1297))

Abstract

Ribonucleotides, ribonucleoside monophosphates (rNMPs), have been revealed as possibly the most noncanonical nucleotides in genomic DNA. rNMPs, either not removed from Okazaki fragments during DNA replication or incorporated and scattered throughout the genome, pose a perturbation to the structure and a threat to the stability of DNA. The instability of DNA is mainly due to the extra 2′-hydroxyl (OH) group of rNMPs which give rise to local structural effects, which may disturb various molecular interactions in cells. As a result of these structural perturbations by rNMPs, the elastic properties of DNA are also affected. Here, we show the approach to test whether the presence of rNMPs in DNA duplexes could alter the elasticity of DNA by implementing atomic force microscopy (AFM)-based single molecule force-measurements of short rNMP(s)-containing oligonucleotides (oligos).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Camps M, Loeb LA (2005) Critical role of R-loops in processing replication blocks. Front Biosci 10:689–698

    Article  CAS  Google Scholar 

  2. Huertas P, Aguilera A (2003) Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcription-associated recombination. Mol Cell 12:711–721

    Article  CAS  Google Scholar 

  3. Forstemann K, Lingner J (2005) Telomerase limits the extent of base pairing between template RNA and telomeric DNA. EMBO Rep 6:361–366

    Article  Google Scholar 

  4. Kao HI, Bambara RA (2003) The protein components and mechanism of eukaryotic Okazaki fragment maturation. Crit Rev Biochem Mol Biol 38:433–452

    Article  CAS  Google Scholar 

  5. Storici F, Bebenek K, Kunkel TA, Gordenin DA, Resnick MA (2007) RNA-templated DNA repair. Nature 447:338–341

    Article  CAS  Google Scholar 

  6. Nick McElhinny SA, Watts BE, Kumar D, Watt DL, Lundstrom EB, Burgers PM, Johansson E, Chabes A, Kunkel TA (2010) Abundant ribonucleotide incorporation into DNA by yeast replicative polymerases. Proc Natl Acad Sci U S A 107:4949–4954

    Article  CAS  Google Scholar 

  7. Sparks JL, Chon H, Cerritelli SM, Kunkel TA, Johansson E, Crouch RJ, Burgers PM (2012) RNase H2-Initiated ribonucleotide excision repair. Mol Cell 47:980–986

    Article  CAS  Google Scholar 

  8. Nick McElhinny SA, Kumar D, Clark AB, Watt DL, Watts BE, Lundstrom EB, Johansson E, Chabes A, Kunkel TA (2010) Genome instability due to ribonucleotide incorporation into DNA. Nat Chem Biol 6:774–781

    Article  CAS  Google Scholar 

  9. Clausen AR, Zhang S, Burgers PM, Lee MY, Kunkel TA (2013) Ribonucleotide incorporation, proofreading and bypass by human DNA polymerase delta. DNA Repair 12:121–127

    Article  CAS  Google Scholar 

  10. Cavanaugh NA, Beard WA, Wilson SH (2010) DNA polymerase beta ribonucleotide discrimination: insertion, misinsertion, extension, and coding. J Biol Chem 285:24457–24465

    Article  CAS  Google Scholar 

  11. Gosavi RA, Moon AF, Kunkel TA, Pedersen LC, Bebenek K (2012) The catalytic cycle for ribonucleotide incorporation by human DNA Pol lambda. Nucleic Acids Res 40:7518–7527

    Article  CAS  Google Scholar 

  12. Reijns MA, Rabe B, Rigby RE, Mill P, Astell KR, Lettice LA, Boyle S, Leitch A, Keighren M, Kilanowski F, Devenney PS, Sexton D, Grimes G, Holt IJ, Hill RE, Taylor MS, Lawson KA, Dorin JR, Jackson AP (2012) Enzymatic removal of ribonucleotides from DNA is essential for mammalian genome integrity and development. Cell 149:1008–1022

    Article  CAS  Google Scholar 

  13. Rowen L, Kornberg A (1978) A ribo-deoxyribonucleotide primer synthesized by primase. J Biol Chem 253:770–774

    CAS  Google Scholar 

  14. Zhu H, Shuman S (2008) Bacterial nonhomologous end joining ligases preferentially seal breaks with a 3′-OH monoribonucleotide. J Biol Chem 283:8331–8339

    Article  CAS  Google Scholar 

  15. Randerath K, Reddy R, Danna TF, Watson WP, Crane AE, Randerath E (1992) Formation of ribonucleotides in DNA modified by oxidative damage in vitro and in vivo. Characterization by 32P-postlabeling. Mutat Res 275:355–366

    Article  CAS  Google Scholar 

  16. Koh KD, Balachander S, Hesselberth JR, Storici F (2015) Ribose-seq: global mapping of ribonucleotides embedded in genomic DNA. Nat Methods. 12:251–257

    Google Scholar 

  17. Mellema JR, Haasnoot CA, van der Marel GA, Wille G, van Boeckel CA, van Boom JH, Altona C (1983) Proton NMR studies on the covalently linked RNA-DNA hybrid r(GCG)d(TATACGC). Assignment of proton resonances by application of the nuclear Overhauser effect. Nucleic Acids Res 11:5717–5738

    Article  CAS  Google Scholar 

  18. Egli M, Usman N, Zhang SG, Rich A (1992) Crystal structure of an Okazaki fragment at 2-A resolution. Proc Natl Acad Sci U S A 89:534–538

    Article  CAS  Google Scholar 

  19. Haasnoot CA, Westerink HP, van der Marel GA, van Boom JH (1983) Conformational analysis of a hybrid DNA-RNA double helical oligonucleotide in aqueous solution: d(CG)r(CG)d(CG) studied by 1D- and 2D-1H NMR spectroscopy. J Biomol Struct Dyn 1:131–149

    Article  CAS  Google Scholar 

  20. Chou SH, Flynn P, Wang A, Reid B (1991) High-resolution NMR studies of chimeric DNA-RNA-DNA duplexes, heteronomous base pairing, and continuous base stacking at junctions. Biochemistry 30:5248–5257

    Article  CAS  Google Scholar 

  21. Jaishree TN, van der Marel GA, van Boom JH, Wang AH (1993) Structural influence of RNA incorporation in DNA: quantitative nuclear magnetic resonance refinement of d(CG)r(CG)d(CG) and d(CG)r(C)d(TAGCG). Biochemistry 32:4903–4911

    Article  CAS  Google Scholar 

  22. Egli M, Usman N, Rich A (1993) Conformational influence of the ribose 2′-hydroxyl group: crystal structures of DNA-RNA chimeric duplexes. Biochemistry 32:3221–3237

    Article  CAS  Google Scholar 

  23. Ban C, Ramakrishnan B, Sundaralingam M (1994) A single 2′-hydroxyl group converts B-DNA to A-DNA. Crystal structure of the DNA-RNA chimeric decamer duplex d(CCGGC)r(G)d(CCGG) with a novel intermolecular G-C base-paired quadruplet. J Mol Biol 236:275–285

    Article  CAS  Google Scholar 

  24. DeRose EF, Perera L, Murray MS, Kunkel TA, London RE (2012) Solution structure of the Dickerson DNA dodecamer containing a single ribonucleotide. Biochemistry 51:2407–2416

    Article  CAS  Google Scholar 

  25. Chiu HC, Koh KD, Evich M, Lesiak AL, Germann MW, Bongiorno A, Riedo E, Storici F (2014) RNA intrusions change DNA elastic properties and structure. Nanoscale 6(17):10009–10017

    Article  CAS  Google Scholar 

  26. Duderstadt KE, Chuang K, Berger JM (2011) DNA stretching by bacterial initiators promotes replication origin opening. Nature 478:209–213

    Article  CAS  Google Scholar 

  27. Bloom KS (2008) Beyond the code: the mechanical properties of DNA as they relate to mitosis. Chromosoma 117:103–110

    Article  Google Scholar 

  28. Bustamante C, Smith SB, Liphardt J, Smith D (2000) Single-molecule studies of DNA mechanics. Curr Opin Struct Biol 10:279–285

    Article  CAS  Google Scholar 

  29. Nishinaka T, Ito Y, Yokoyama S, Shibata T (1997) An extended DNA structure through deoxyribose-base stacking induced by RecA protein. Proc Natl Acad Sci U S A 94:6623–6628

    Article  CAS  Google Scholar 

  30. Mazurek A, Johnson CN, Germann MW, Fishel R (2009) Sequence context effect for hMSH2-hMSH6 mismatch-dependent activation. Proc Natl Acad Sci U S A 106:4177–4182

    Article  CAS  Google Scholar 

  31. Gross P, Laurens N, Oddershede LB, Bockelmann U, Peterman EJG, Wuite GJL (2011) Quantifying how DNA stretches, melts and changes twist under tension. Nat Phys 7:731–736

    Article  CAS  Google Scholar 

  32. Weber G, Essex JW, Neylon C (2009) Probing the microscopic flexibility of DNA from melting temperatures. Nat Phys 5:769–773

    Article  CAS  Google Scholar 

  33. Rothemund PW (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440: 297–302

    Article  CAS  Google Scholar 

  34. Schiffels D, Liedl T, Fygenson DK (2013) Nanoscale structure and microscale stiffness of DNA nanotubes. ACS Nano 7:6700–6710

    Article  CAS  Google Scholar 

  35. Maune HT, Han SP, Barish RD, Bockrath M, Iii WA, Rothemund PW, Winfree E (2010) Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. Nat Nanotechnol 5:61–66

    Article  CAS  Google Scholar 

  36. Chang M, Yang CS, Huang DM (2011) Aptamer-conjugated DNA icosahedral nanoparticles as a carrier of doxorubicin for cancer therapy. ACS Nano 5:6156–6163

    Article  CAS  Google Scholar 

  37. Rief M, Clausen-Schaumann H, Gaub HE (1999) Sequence-dependent mechanics of single DNA molecules. Nat Struct Biol 6:346–349

    Article  CAS  Google Scholar 

  38. Morii T, Mizuno R, Haruta H, Okada T (2004) An AFM study of the elasticity of DNA molecules. Thin Solid Films 464:456–458

    Article  Google Scholar 

  39. Smith S, Finzi L, Bustamante C (1992) Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science 258:1122–1126

    Article  CAS  Google Scholar 

  40. Chiou CH, Huang YY, Chiang MH, Lee HH, Lee GB (2006) New magnetic tweezers for investigation of the mechanical properties of single DNA molecules. Nanotechnology 17:1217

    Article  CAS  Google Scholar 

  41. Smith SB, Cui Y, Bustamante C (1996) Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271:795–799

    Article  CAS  Google Scholar 

  42. Baumann CG, Smith SB, Bloomfield VA, Bustamante C (1997) Ionic effects on the elasticity of single DNA molecules. Proc Natl Acad Sci U S A 94:6185–6190

    Article  CAS  Google Scholar 

  43. Herrero-Galan E, Fuentes-Perez ME, Carrasco C, Valpuesta JM, Carrascosa JL, Moreno-Herrero F, Arias-Gonzalez JR (2013) Mechanical identities of RNA and DNA double helices unveiled at the single-molecule level. J Am Chem Soc 135:122–131

    Article  CAS  Google Scholar 

  44. Chiu H-C, Kim S, Klinke C, Riedo E (2012) Morphology dependence of radial elasticity in multiwalled boron nitride nanotubes. Appl Phys Lett 101:103109

    Article  Google Scholar 

  45. Chiu H-C, Ritz B, Kim S, Tosatti E, Klinke C, Riedo E (2012) Nanotubes: sliding on a nanotube: interplay of friction, deformations and structure. Adv Mater 24:2797

    Article  CAS  Google Scholar 

  46. Li T-D, Riedo E (2008) Nonlinear viscoelastic dynamics of nanoconfined wetting liquids. Phys Rev Lett 100:106102

    Article  Google Scholar 

  47. Lucas M, Zhang X, Palaci I, Klinke C, Tosatti E, Riedo E (2009) Hindered rolling and friction anisotropy in supported carbon nanotubes. Nat Mater 8:876–881

    Article  CAS  Google Scholar 

  48. Palaci I, Fedrigo S, Brune H, Klinke C, Chen M, Riedo E (2005) Radial elasticity of multiwalled carbon nanotubes. Phys Rev Lett 94:175502

    Article  CAS  Google Scholar 

  49. Noy A, Vezenov DV, Kayyem JF, Meade TJ, Lieber CM (1997) Stretching and breaking duplex DNA by chemical force microscopy. Chem Biol 4:519–527

    Article  CAS  Google Scholar 

  50. Wiggins PA, van der Heijden T, Moreno-Herrero F, Spakowitz A, Phillips R, Widom J, Dekker C, Nelson PC (2006) High flexibility of DNA on short length scales probed by atomic force microscopy. Nat Nanotechnol 1:137–141

    Article  CAS  Google Scholar 

  51. Morfill J, Kuhner F, Blank K, Lugmaier RA, Sedlmair J, Gaub HE (2007) B-S transition in short oligonucleotides. Biophys J 93:2400–2409

    Article  CAS  Google Scholar 

  52. Nguyen T-H et al (2010) An improved measurement of dsDNA elasticity using AFM. Nanotechnology 21:75101

    Article  Google Scholar 

  53. Strunz T, Oroszlan K, Schafer R, Guntherodt HJ (1999) Dynamic force spectroscopy of single DNA molecules. Proc Natl Acad Sci U S A 96:11277–11282

    Article  CAS  Google Scholar 

  54. Mathew-Fenn RS, Das R, Harbury PA (2008) Remeasuring the double helix. Science 322:446–449

    Article  CAS  Google Scholar 

  55. Yuan C, Chen H, Lou XW, Archer LA (2008) DNA bending stiffness on small length scales. Phys Rev Lett 100:18102

    Article  Google Scholar 

  56. Oc L, Jeon J-H, Sung W (2010) How double-stranded DNA breathing enhances its flexibility and instability on short length scales. Phys Rev E Stat Nonlin Soft Matter Phys 81:21906

    Article  Google Scholar 

  57. Gibson CT, Watson GS, Myhra S (1996) Determination of the spring constants of probes for force microscopy/spectroscopy. Nanotechnology 7:259

    Article  Google Scholar 

  58. Sader JE, Larson I, Mulvaney P, White LR (1995) Method for the calibration of atomic force microscope cantilevers. Rev Sci Instrum 66:3789

    Article  CAS  Google Scholar 

  59. Butt H-J, Cappella B, Kappl M (2005) Force measurements with the atomic force microscope: Technique, interpretation and applications. Surf Sci Rep 59:1–152

    Article  CAS  Google Scholar 

  60. Sader JE, Chon JWM, Mulvaney P (1999) Calibration of rectangular atomic force microscope cantilevers. Rev Sci Instrum 70:3967

    Article  CAS  Google Scholar 

  61. Hutter JL, Bechhoefer J (1993) Calibration of atomic‐force microscope tips. Rev Sci Instrum 64:1868

    Article  CAS  Google Scholar 

  62. Cleveland JP, Manne S, Bocek D, Hansma PK (1993) A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy. Rev Sci Instrum 64:43705

    Article  Google Scholar 

  63. Cumpson PJ, Clifford CA, Hedley J (2004) Quantitative analytical atomic force microscopy: a cantilever reference device for easy and accurate AFM spring-constant calibration. Meas Sci Technol 15:1337

    Article  CAS  Google Scholar 

  64. Wong J, Chilkoti A, Moy VT (1999) Direct force measurements of the streptavidin-biotin interaction. Biomol Eng 16:45–55

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Integrative Biosystems Institute grant IBSI-4 to F.S. and E.R., and the NSF grant MCB-1021763 to F.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Storici .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Koh, K.D., Chiu, HC., Riedo, E., Storici, F. (2015). Measuring the Elasticity of Ribonucleotide(s)-Containing DNA Molecules Using AFM. In: Guo, P., Haque, F. (eds) RNA Nanotechnology and Therapeutics. Methods in Molecular Biology, vol 1297. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2562-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2562-9_3

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2561-2

  • Online ISBN: 978-1-4939-2562-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics