Skip to main content

Mapping RNA Interactions to Proteins in Virions Using CLIP-Seq

  • Protocol
RNA Nanotechnology and Therapeutics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1297))

  • 2693 Accesses

Abstract

RNA nanotechnology often involves protein–RNA complexes that require significant understanding of how the proteins and RNAs contact each other. The CLIP-Seq (cross-linking immunoprecipitation, and DNA sequencing) protocol can be used to probe the RNA molecules that interact with proteins. We have optimized the procedures for RNA fragmentation, immunoprecipitation, and library construction in CLIP-Seq to map the interactions between the RNA and the capsid of a simple positive-strand RNA virus. The results show that distinct portions of the viral RNA contact the capsid. The protocol should be applicable to other RNA virions and also RNA–protein nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guo P, Haque F, Hallahan B, Reif R, Li H (2012) Uniqueness, advantages, challenges, solutions, and perspectives in therapeutics applying RNA nanotechnology. Nucleic Acid Ther 22:226–245

    CAS  Google Scholar 

  2. Guo P, Zhan C, Chen C, Garver K, Trottier M (1998) Inter-RNA interaction of phage f29 pRNA to form a hexameric complex for viral DNA transportation. Mol Cell 2:149–155

    Article  CAS  Google Scholar 

  3. Kao CC, Ni P, Hema M, Huang X, Dragnea B (2011) The coat protein leads the way: an update on basic and applied studies with the Brome mosaic virus coat protein. Mol Plant Pathol 12:403–412

    Article  CAS  Google Scholar 

  4. Yi GH, Letteney E, Kim C-H, Kao CC (2009) Brome Mosaic Virus capsid protein regulates translation of viral replication proteins by binding to the replicase assembly RNA element. RNA 15:6150–6626

    Article  Google Scholar 

  5. Yi G, Vaughan RC, Yarbrough I, Dharmaian S, Kao CC (2009) RNA binding by the brome mosaic virus capsid protein and the regulation of viral RNA accumulation. J Mol Biol 391:314–326

    Article  CAS  Google Scholar 

  6. Darnell RB (2010) HITS-CLIP: panoramic views of protein-RNA regulation in living cells. Wiley Interdiscip Rev RNA 1:266–286

    Article  CAS  Google Scholar 

  7. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  CAS  Google Scholar 

  8. Watanabe T, Takeda A, Tsukiyama T, Mise K, Okuno T, Sasaki H, Minami N, Imai H (2006) Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes. Genes Dev 20:1732–1743

    Article  CAS  Google Scholar 

  9. Ni P, Vaughan R, Tragesser B, Kao CC (2013) The plant host can affect the encapsidation of Brome Mosaic Virus (BMV) RNA; BMV virions are surprisingly heterogeneous. J Mol Biol 426:1061–1076

    Article  Google Scholar 

  10. Hockensmith JW, Kubasek WL, Vorachek WR, von Hippel PH (1986) Laser cross-linking of nucleic acids to proteins. Methodology and first applications to the phage T4 DNA replication system. J Biol Chem 261:3512–3518

    CAS  Google Scholar 

  11. Shetlar MD, Christensen J, Hom K (1984) Photochemical addition of amino acids and peptides to DNA. Photochem Photobiol 39:125–133

    Article  CAS  Google Scholar 

  12. Marguerat S, Bähler J (2010) RNA-seq: from technology to biology. Cell Mol Life Sci 67:569–579

    Article  CAS  Google Scholar 

  13. Wang Z, Tollervey J, Briese M, Turner D, Ule J (2009) CLIP: construction of cDNA libraries for high-throughput sequencing from RNAs cross-linked to proteins in vivo. Methods 48:287–293

    Article  Google Scholar 

  14. Hansen KD, Brenner SE, Dudoit S (2010) Biases in Illumina transcriptome sequencing caused by random hexamer priming. Nucleic Acids Res 38:e131

    Article  Google Scholar 

  15. Hafner M, Renwick N, Brown M, Mihailović A, Holoch D, Lin C, Pena JT, Nusbaum JD, Morozov P, Ludwig J, Ojo T, Luo S, Schroth G, Tuschl T (2011) RNA-ligase-dependent biases in miRNA representation in deep-sequenced small RNA cDNA libraries. RNA 17:1697–1712

    Article  CAS  Google Scholar 

  16. Alon S, Vigneault F, Eminaga S, Christodoulou DC, Seidman JG, Church GM, Eisenberg E (2011) Barcoding bias in high-throughput multiplex sequencing of miRNA. Genome Res 21:1506–1511

    Article  CAS  Google Scholar 

  17. Kozarewa I, Ning Z, Quail MA, Sanders MJ, Berriman M, Turner DJ (2009) Amplification-free Illumina sequencing-library preparation facilitates improved mapping and assembly of (G + C)-biased genomes. Nat Methods 6:291–295

    Article  CAS  Google Scholar 

  18. Loman NJ, Misra RV, Dallman TJ, Constantinidou C, Gharbia SE, Wain J, Pallen MJ (2012) Performance comparison of benchtop high-throughput sequencing platforms. Nat Biotechnol 30:434–439

    Article  CAS  Google Scholar 

  19. Berger B, Peng J, Singh M (2013) Computational solutions for omics data. Nat Rev Genet 14:333–346

    Article  CAS  Google Scholar 

  20. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079

    Article  Google Scholar 

  21. Blankenberg D, Gordon A, Von Kuster G, Coraor N, Taylor J, Nekrutenko A (2010) Galaxy Team. Manipulation of FASTQ data with Galaxy. Bioinformatics 26:1783–1785

    Article  CAS  Google Scholar 

  22. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by a grant from the NIH NIAID 1R01AI090280. We thank S. Middleton and R. Qi for helpful discussions and reagents used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Cheng Kao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Fan, B., Ni, P., Kao, C.C. (2015). Mapping RNA Interactions to Proteins in Virions Using CLIP-Seq. In: Guo, P., Haque, F. (eds) RNA Nanotechnology and Therapeutics. Methods in Molecular Biology, vol 1297. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2562-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2562-9_15

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2561-2

  • Online ISBN: 978-1-4939-2562-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics