Skip to main content

Enrichment and Identification of Bacterial Glycopeptides by Mass Spectrometry

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1295))

Abstract

Large-scale analysis of protein N- and O-linked glycosylation by mass spectrometry has traditionally been performed in eukaryotes by parallel approaches aimed at elucidating glycan structures (glycomics) and their formerly glycosylated peptides (glycoproteomics) without reference to their intact state. Such analyses depend heavily on commercial glycosidases (e.g. protein N-glycosidase F) that can remove glycans from the peptide backbone for separate analyses. Bacterial glycosylation has only recently been identified as a widespread phenomenon. In many cases however, unique bacterial sugars preclude enzymatic removal, therefore ultimately requiring a site-specific approach for intact glycopeptide analysis. Here, we describe protocols for the enrichment of bacterial glycopeptides using zwitterionic–hydrophilic interaction liquid chromatography (ZIC-HILIC) and their analysis using liquid chromatography coupled to electrospray ionization tandem mass spectrometry (LC-MS/MS) with collision-induced dissociation (CID) and higher energy collisional dissociation (HCD) fragmentation for glycan structure elucidation and glycopeptide identification.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Iwashkiw JA, Vozza NF, Kinsella RL, Feldman MF (2013) Pour some sugar on it: the expanding world of bacterial protein O-linked glycosylation. Mol Microbiol 89:14–28

    Article  CAS  PubMed  Google Scholar 

  2. Nothaft H, Szymanski CM (2010) Protein glycosylation in bacteria: sweeter than ever. Nat Rev Microbiol 8:765–778

    Article  CAS  PubMed  Google Scholar 

  3. Szymanski CM, Burr DH, Guerry P (2002) Campylobacter protein glycosylation affects host cell interactions. Infect Immun 70: 2242–2244

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Howard SL, Jagannathan A, Soo EC, Hui JP, Aubry AJ, Ahmed I, Karlyshev A, Kelly JF, Jones MA, Stevens MP, Logan SM, Wren BW (2009) Campylobacter jejuni glycosylation island important in cell charge, legionaminic acid biosynthesis, and colonization of chickens. Infect Immun 77:2544–2556

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Iwashkiw JA, Seper A, Weber BS, Scott NE, Vinogradov E, Stratilo C, Reiz B, Cordwell SJ, Whittal R, Schild S, Feldman MF (2012) Identification of a general O-linked protein glycosylation system in Acinetobacter baumannii and its role in virulence and biofilm formation. PLoS Pathog 8:e1002758

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Lithgow KV, Scott NE, Iwashkiw JA, Thomson ELS, Foster LJ, Feldman MF, Dennis JJ (2014) A general protein O-glycosylation system within the Burkholderia cepacia complex is involved in motility and virulence. Mol Microbiol 92:116–137

    Article  CAS  PubMed  Google Scholar 

  7. Zielinska DF, Gnad F, Wisniewski JR, Mann M (2010) Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell 141:897–907

    Article  CAS  PubMed  Google Scholar 

  8. Zhang H, Li X, Martin DB, Aebersold R (2003) Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat Biotechnol 21:660–666

    Article  CAS  PubMed  Google Scholar 

  9. Fredriksen L, Moen A, Adzhubei AA, Mathiesen G, Eijsink VG, Egge-Jacobsen W (2013) Lactobacillus plantarum WCFS1 O-linked protein glycosylation: an extended spectrum of target proteins and modification sites detected by mass spectrometry. Glycobiology 23:1439–1451

    Article  CAS  PubMed  Google Scholar 

  10. Nothaft H, Scott NE, Vinogradov E, Liu X, Hu R, Beadle B, Fodor C, Miller WG, Li J, Cordwell SJ, Szymanski CM (2012) Diversity in the protein N-glycosylation pathways within the Campylobacter genus. Mol Cell Proteomics 11:1203–1219

    Article  PubMed Central  PubMed  Google Scholar 

  11. Thibault P, Logan SM, Kelly JF, Brisson JR, Ewing CP, Trust TJ, Guerry P (2001) Identification of the carbohydrate moieties and glycosylation motifs in Campylobacter jejuni flagellin. J Biol Chem 276:34862–34870

    Article  CAS  PubMed  Google Scholar 

  12. Grass S, Lichti CF, Townsend RR, Gross J, St Geme JW 3rd (2010) The Haemophilus influenzae HMW1C protein is a glycosyltransferase that transfers hexose residues to asparagine sites in the HMW1 adhesin. PLoS Pathog 6:e1000919

    Article  PubMed Central  PubMed  Google Scholar 

  13. Verma A, Schirm M, Arora SK, Thibault P, Logan SM, Ramphal R (2006) Glycosylation of b-Type flagellin of Pseudomonas aeruginosa: structural and genetic basis. J Bacteriol 188: 4395–4403

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Scott NE, Nothaft H, Edwards AV, Labbate M, Djordjevic SP, Larsen MR, Szymanski CM, Cordwell SJ (2012) Modification of the Campylobacter jejuni N-linked glycan by EptC-mediated addition of phosphoethanolamine. J Biol Chem 287:29384–29396

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Twine SM, Reid CW, Aubry A, McMullin DR, Fulton KM, Austin J, Logan SM (2009) Motility and flagellar glycosylation in Clostridium difficile. J Bacteriol 191:7050–7062

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Gault J, Malosse C, Dumenil G, Chamot-Rooke J (2013) A combined mass spectrometry strategy for complete posttranslational modification mapping of Neisseria meningitidis major pilin. J Mass Spectrom 48:1199–1206

    Article  CAS  PubMed  Google Scholar 

  17. Young NM, Brisson JR, Kelly J, Watson DC, Tessier L, Lanthier PH, Jarrell HC, Cadotte N, St Michael F, Aberg E, Szymanski CM (2002) Structure of the N-linked glycan present on multiple glycoproteins in the Gram-negative bacterium, Campylobacter jejuni. J Biol Chem 277:42530–42539

    Article  CAS  PubMed  Google Scholar 

  18. Scott NE, Parker BL, Connolly AM, Paulech J, Edwards AV, Crossett B, Falconer L, Kolarich D, Djordjevic SP, Højrup P, Packer NH, Larsen MR, Cordwell SJ (2011) Simultaneous glycan-peptide characterization using hydrophilic interaction chromatography and parallel fragmentation by CID, higher energy collisional dissociation, and electron transfer dissociation MS applied to the N-linked glycoproteome of Campylobacter jejuni. Mol Cell Proteomics 10:M000031–MCP000201

    Article  PubMed Central  PubMed  Google Scholar 

  19. Scott NE, Kinsella RL, Edwards AV, Larsen MR, Dutta SM, Saba J, Foster LJ, Feldman MF (2014) Diversity within the O-linked protein glycosylation systems of Acinetobacter species. Mol Cell Proteomics 13(9):2354–2370

    Article  CAS  PubMed  Google Scholar 

  20. Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2:1896–1906

    Article  CAS  PubMed  Google Scholar 

  21. Kollipara L, Zahedi RP (2013) Protein carbamylation: in vivo modification or in vitro artefact? Proteomics 13:941–944

    Article  CAS  PubMed  Google Scholar 

  22. Gobom J, Nordhoff E, Mirgorodskaya E, Ekman R, Roepstorff P (1999) Sample purification and preparation technique based on nano-scale reversed-phase columns for the sensitive analysis of complex peptide mixtures by matrix-assisted laser desorption/ionization mass spectrometry. J Mass Spectrom 34:105–116

    Article  CAS  PubMed  Google Scholar 

  23. Mysling S, Palmisano G, Højrup P, Thaysen-Andersen M (2010) Utilizing ion-pairing hydrophilic interaction chromatography solid phase extraction for efficient glycopeptide enrichment in glycoproteomics. Anal Chem 82:5598–5609

    Article  CAS  PubMed  Google Scholar 

  24. Larsen MR, Hojrup P, Roepstorff P (2005) Characterization of gel-separated glycoproteins using two-step proteolytic digestion combined with sequential microcolumns and mass spectrometry. Mol Cell Proteomics 4:107–119

    Article  CAS  PubMed  Google Scholar 

  25. Wu SW, Pu TH, Viner R, Khoo KH (2014) Novel LC-MS(2) product dependent parallel data acquisition function and data analysis workflow for sequencing and identification of intact glycopeptides. Anal Chem 86:5478–5486

    Article  CAS  PubMed  Google Scholar 

  26. Saba J, Dutta S, Hemenway E, Viner R (2012) Increasing the productivity of glycopeptides analysis by using higher-energy collision dissociation-accurate mass-product-dependent electron transfer dissociation. Int J Proteomics 2012:560391

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by an Australian Research Council Discovery Project Grant to S.J.C. (ARC DP 110103573). N.E.S. is supported by a National Health and Medical Research Council of Australia (NHMRC) Overseas (Biomedical) Early Career Fellowship (APP1037373) and a Michael Smith Foundation for Health Research Trainee Postdoctoral Fellowship (award # 5363).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart J. Cordwell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Scott, N.E., Cordwell, S.J. (2015). Enrichment and Identification of Bacterial Glycopeptides by Mass Spectrometry. In: Posch, A. (eds) Proteomic Profiling. Methods in Molecular Biology, vol 1295. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2550-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2550-6_25

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2549-0

  • Online ISBN: 978-1-4939-2550-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics