Skip to main content

Chloroplast Isolation and Affinity Chromatography for Enrichment of Low-Abundant Proteins in Complex Proteomes

  • Protocol
Proteomic Profiling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1295))

Abstract

Detailed knowledge of the proteome is crucial to advance the biological sciences. Low-abundant proteins are of particular interest to many biologists as they include, for example those proteins involved in signal transduction. Recent technological advances resulted in a tremendous increase in protein identification sensitivity by mass spectrometry (MS). However, the dynamic range in protein abundance still forms a fundamental problem that limits the detection of low-abundant proteins in complex proteomes. These proteins will typically escape detection in shotgun MS experiments due to the presence of other proteins at an abundance several-fold higher in order of magnitude. Therefore, specific enrichment strategies are required to overcome this technical limitation of MS-based protein discovery. We have searched for novel signal transduction proteins, more specifically kinases and calcium-binding proteins, and here we describe different approaches for enrichment of these low-abundant proteins from isolated chloroplasts from pea and Arabidopsis for subsequent proteomic analysis by MS. These approaches could be extended to include other signal transduction proteins and target different organelles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rolland N, Curien G, Finazzi G, Kuntz M, Marechal E, Matringe M et al (2012) The biosynthetic capacities of the plastids and integration between cytoplasmic and chloroplast processes. Ann Rev Genet 46:233–264

    Article  CAS  PubMed  Google Scholar 

  2. Jarvis P, Lopez-Juez E (2013) Biogenesis and homeostasis of chloroplasts and other plastids. Nat Rev Mol Cell Biol 14:787–802

    Article  CAS  PubMed  Google Scholar 

  3. Shapiguzov A, Vainonen JP, Wrzaczek M, Kangasjarvi J (2012) ROS-talk—how the apoplast, the chloroplast, and the nucleus get the message through. Front Plant Sci 3:292

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Nomura H, Komori T, Uemura S, Kanda Y, Shimotani K, Nakai K et al (2012) Chloroplast-mediated activation of plant immune signalling in Arabidopsis. Nature Commun 3:926

    Article  Google Scholar 

  5. Kleffmann T, Russenberger D, von Zychlinski A, Christopher W, Sjolander K, Gruissem W et al (2004) The Arabidopsis thaliana chloroplast proteome reveals pathway abundance and novel protein functions. Curr Biol 14:354–362

    Article  CAS  PubMed  Google Scholar 

  6. Zybailov B, Rutschow H, Friso G, Rudella A, Emanuelsson O, Sun Q et al (2008) Sorting signals, N-terminal modifications and abundance of the chloroplast proteome. PLoS One 3:e1994

    Article  PubMed Central  PubMed  Google Scholar 

  7. Ferro M, Brugiere S, Salvi D, Seigneurin-Berny D, Court M, Moyet L et al (2010) AT_CHLORO, a comprehensive chloroplast proteome database with subplastidial localization and curated information on envelope proteins. Mol Cell Proteomics 9:1063–1084

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Huang M, Friso G, Nishimura K, Qu X, Olinares PD, Majeran W et al (2013) Construction of plastid reference proteomes for maize and Arabidopsis and evaluation of their orthologous relationships; the concept of orthoproteomics. J Proteome Res 12:491–504

    Article  CAS  PubMed  Google Scholar 

  9. Bayer RG, Stael S, Rocha AG, Mair A, Vothknecht UC, Teige M (2012) Chloroplast-localized protein kinases: a step forward towards a complete inventory. J Exp Bot 63:1713–1723

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Bayer RG, Stael S, Csaszar E, Teige M (2011) Mining the soluble chloroplast proteome by affinity chromatography. Proteomics 11:1287–1299

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Kunst L (1998) Preparation of physiologically active chloroplasts from Arabidopsis. Methods Mol Biol 82:43–48

    CAS  PubMed  Google Scholar 

  12. Brautigam A, Shrestha RP, Whitten D, Wilkerson CG, Carr KM, Froehlich JE et al (2008) Low-coverage massively parallel pyrosequencing of cDNAs enables proteomics in non-model species: comparison of a species-specific database generated by pyrosequencing with databases from related species for proteome analysis of pea chloroplast envelopes. J Biotechnol 136:44–53

    Article  PubMed  Google Scholar 

  13. Simm S, Papasotiriou DG, Ibrahim M, Leisegang MS, Muller B, Schorge T et al (2013) Defining the core proteome of the chloroplast envelope membranes. Front Plant Sci 4:11

    Article  PubMed Central  PubMed  Google Scholar 

  14. Tomizioli M, Lazar C, Brugiere S, Burger T, Salvi D, Gatto L et al (2014) Deciphering thylakoid sub-compartments using a mass spectrometry-based approach. Mol Cell Proteomics 13:2147–2167

    Article  CAS  PubMed  Google Scholar 

  15. Wissing J, Jansch L, Nimtz M, Dieterich G, Hornberger R, Keri G et al (2007) Proteomics analysis of protein kinases by target class-selective prefractionation and tandem mass spectrometry. Mol Cell Proteomics 6:537–547

    Article  CAS  PubMed  Google Scholar 

  16. Schleiff E, Soll J, Kuchler M, Kuhlbrandt W, Harrer R (2003) Characterization of the translocon of the outer envelope of chloroplasts. J Cell Biol 160:541–551

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in beta vulgaris. Plant Physiol 24:1–15

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Chaga GS, Ersson B, Porath JO (1996) Isolation of calcium-binding proteins on selective adsorbents. Application to purification of bovine calmodulin. J Chromatogr A 732:261–269

    Article  CAS  PubMed  Google Scholar 

  19. Halliwell B (1978) The chloroplast at work. A review of modern developments in our understanding of chloroplast metabolism. Prog Biophys Mol Biol 33:1–54

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the author’s lab is supported by grants from the Austrian Science Fund (FWF) to MT (P 23435-B12 and P 25359-B21) and the Marie Curie Initial training network (ITN) “CALIPSO” (GA ITN 2013-607607) from the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Teige .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bayer, R.G., Stael, S., Teige, M. (2015). Chloroplast Isolation and Affinity Chromatography for Enrichment of Low-Abundant Proteins in Complex Proteomes. In: Posch, A. (eds) Proteomic Profiling. Methods in Molecular Biology, vol 1295. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2550-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2550-6_16

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2549-0

  • Online ISBN: 978-1-4939-2550-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics