Skip to main content

RLM-RACE, PPM-RACE, and qRT-PCR: An Integrated Strategy to Accurately Validate miRNA Target Genes

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1296))

Abstract

MicroRNAs (miRNAs) are important regulators involved in most biological processes in eukarya. They play critical roles in growth, development, signal transduction, or stress response by controlling gene expression at the posttranscriptional level. Identification and characterization of miRNA-targeted mRNAs is essential for the analysis of miRNA functions. In plants, the perfect complementarity between most miRNAs and their targets enables the accurate predictions of their targets, while slicing of the targeted mRNAs facilitates target validation through RNA Ligase-Mediated (RLM)-Rapid Amplification of cDNA Ends (RACE) method. However, this method only determines the 5′-end of the cleavage product. To more accurately validate the predicted target genes of miRNAs and exactly determine the cleavage sites within the targets, an integrated strategy comprising RLM-RACE, Poly(A) Polymerase-Mediated (PPM)-RACE, and qRT-PCR was developed. The efficiency of this method is illustrated by the precise sequence validation of predicted target mRNAs of miRNAs in grapevine, citrus, peach, and other fruit crops. Our on-going research indicates that RLM-RACE, PPM-RACE, and qRT-PCR are very effective in the verification of sequences of miRNA targets obtained by Degradome sequencing. The protocol for RLM-RACE, PPM-RACE, and qRT-PCR is rapid, effective, cheap, and can be completed within 2–3 days.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bartel B, Bartel DP (2003) MicroRNAs: at the root of plant development? Plant Physiol 13:709–717

    Article  Google Scholar 

  2. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  3. Mallory AC, Vaucheret H (2004) MicroRNAs: something important between the genes. Curr Opin Plant Biol 7:120–125

    Article  CAS  PubMed  Google Scholar 

  4. Carrington JC, Ambros V (2003) Role of microRNAs in plant and animal development. Science 301:336–338

    Article  CAS  PubMed  Google Scholar 

  5. Hunter C, Poethig RS (2003) Missing links: miRNAs and plant development. Curr Opin Genet Dev 13:372–378

    Article  CAS  PubMed  Google Scholar 

  6. Emery JF, Floyd SK, Alvarez J et al (2003) Radial patterning of Arabidopsis shoots by Class III HD-ZIP and KANADI Genes. Curr Biol 13:1768–1774

    Article  CAS  PubMed  Google Scholar 

  7. Juarez MT, Kui JS, Thomas J et al (2004) MicroRNA-mediated repression of rolled leaf specifies maize leaf polarity. Nature 428:84–88

    Article  CAS  PubMed  Google Scholar 

  8. Mallory AC, Dugas DV, Bartel DP et al (2004) MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Curr Biol 14:1035–1046

    Article  CAS  PubMed  Google Scholar 

  9. Mallory AC, Reinhart BJ, Jones-Rhoades MW et al (2004) MicroRNA control of PHABULOSA in leaf development, importance of pairing to the micro RNA 5′ region. EMBO J 23:3356–3364

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15:2730–2741

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Kasschau KD, Xie Z, Allen E et al (2003) P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA function. Dev Cell 4:205–217

    Article  CAS  PubMed  Google Scholar 

  12. Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Mallory AC, Bartel DP, Bartel B (2005) MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 Is essential for proper development and modulates expression of early auxin response genes. Plant Cell 17:1360–1375

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Allen E, Xie Z, Gustafson AM et al (2005) microRNA-directed phasing during transacting siRNA biogenesis in plants. Cell 121:2071

    Google Scholar 

  15. Chen X (2005) MicroRNA biogenesis and function in plants. FEBS Lett 579:5923–5931

    Article  CAS  PubMed  Google Scholar 

  16. Berezikov E, Cuppen E, Plasterk RH (2006) Approaches to microRNA discovery. Nat Genet 38:S2

    Article  CAS  PubMed  Google Scholar 

  17. Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Kurihara Y, Watanabe Y (2004) Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc Natl Acad Sci U S A 101:12753–12758

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Article  CAS  PubMed  Google Scholar 

  20. Allen RS, Li JY, Alonso-Peral MM et al (2010) MicroR159 regulation of most conserved targets in Arabidopsis has negligible phenotypic effects. Silence 1:18

    Article  PubMed Central  PubMed  Google Scholar 

  21. Addo-Quaye C, Eshoo TW, Bartel DP et al (2008) Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr Biol 18:758–762

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Pantaleo V, Szittya G, Moxon S et al (2010) Identification of grapevine microRNAs and their targets using high-throughput sequencing and degradome analysis. Plant J 62:960–976

    CAS  PubMed  Google Scholar 

  23. German MA, Pillay M, Jeong DH et al (2008) Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat Biotechnol 26:941–946

    Article  CAS  PubMed  Google Scholar 

  24. Thomson DW, Bracken CP, Goodal GJ (2011) Experimental strategies for microRNA target identification. Nucleic Acids Res 39(16):6845–6853

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Lytle JR, Yario TA, Steitz JA (2007) Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′-UTR as in the 3′-UTR. Proc Natl Acad Sci U S A 104:9667–9672

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Kong YW, Cannell IG, de Moor CH et al (2008) The mechanism of micro-RNA-mediated translation repression is determined by the promoter of the target gene. Proc Natl Acad Sci U S A 105:8866–8871

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Hendrickson DG, Hogan DJ, McCullough HL et al (2009) Concordant regulation of translation and mRNA abundance for hundreds of targets of a human microRNA. PLoS Biol 7:e1000238

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (NSFC) (No. 31301759), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the National Science Foundation of China (No. 60901053), and the Nanjing Agricultural University Youth Science and Technology Innovation Fund (KJ2013013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinggui Fang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wang, C., Fang, J. (2015). RLM-RACE, PPM-RACE, and qRT-PCR: An Integrated Strategy to Accurately Validate miRNA Target Genes. In: Rederstorff, M. (eds) Small Non-Coding RNAs. Methods in Molecular Biology, vol 1296. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2547-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2547-6_16

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2546-9

  • Online ISBN: 978-1-4939-2547-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics