Skip to main content

Microarray Analysis of Small Non-Coding RNAs

  • Protocol
Small Non-Coding RNAs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1296))

Abstract

Microarray technology has evolved to efficiently profile the expression of RNAs. However, analysis of small non-coding RNAs (ncRNAs) is challenging due to their short length and highly divergent sequences with large variation in GC content leading to very different hybridization properties. To overcome these challenges, LNA-modified oligonucleotides have been used to enhance and normalize the melting temperature (Tm) of capture probes, which allows sensitive profiling of small ncRNAs regardless of their sequence. Here, we describe the isolation and labeling of small non-coding RNAs, as well as their hybridization to microarrays with LNA-modified oligonucleotide probes using a semi-automated hybridization device.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davison TS, Johnson CD, Andruss BF (2006) Analyzing micro-RNA expression using microarrays. Methods Enzymol 411:14–34

    Article  CAS  PubMed  Google Scholar 

  2. Castoldi M, Benes V, Hentze MW, Muckenthaler MU (2007) miChip: a microarray platform for expression profiling of microRNAs based on locked nucleic acid (LNA) oligonucleotide capture probes. Methods 43(2):146–152

    Article  CAS  PubMed  Google Scholar 

  3. Karbiener M, Fischer C, Nowitsch S, Opriessnig P, Papak C, Ailhaud G et al (2009) microRNA miR-27b impairs human adipocyte differentiation and targets PPARgamma. Biochem Biophys Res Commun 390(2):247–251

    Article  CAS  PubMed  Google Scholar 

  4. Eduati F, di Camillo B, Karbiener M, Scheideler M, Corà D, Caselle M et al (2012) Dynamic modeling of miRNA-mediated feed-forward loops. J Comput Biol 19(2):188–199

    Article  CAS  PubMed  Google Scholar 

  5. Bach D, Fuereder J, Karbiener M, Scheideler M, Ress AL, Neureiter D et al (2013) Comprehensive analysis of alterations in the miRNome in response to photodynamic treatment. J Photochem Photobiol B 120:74–81

    Article  CAS  PubMed  Google Scholar 

  6. Karbiener M, Neuhold C, Opriessnig P, Prokesch A, Bogner-Strauss JG (2011) MicroRNA-30c promotes human adipocyte differentiation and co-represses PAI-1 and ALK2. RNA Biol [Internet] 8(5). http://www.es.landesbioscience.com/journals/rnabiology/article/16153/. Accessed 20 Jul 2011

  7. Karbiener M, Pisani DF, Frontini A, Oberreiter LM, Lang E, Vegiopoulos A, et al (2014) MicroRNA-26 family is required for human adipogenesis and drives characteristics of brown adipocytes. Stem Cells 32(6):1578–1590

    Google Scholar 

  8. Pichler M, Ress AL, Winter E, Stiegelbauer V, Karbiener M, Schwarzenbacher D et al (2014) MiR-200a regulates epithelial to mesenchymal transition-related gene expression and determines prognosis in colorectal cancer patients. Br J Cancer 110(6):1614–1621

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162(1):156–159

    Article  CAS  PubMed  Google Scholar 

  10. Chomczynski P (1993) A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques 15(3):532–534, 536–537

    CAS  PubMed  Google Scholar 

  11. TRIzol Reagent Manual [Internet]. http://tools.lifetechnologies.com/content/sfs/manuals/trizol_reagent.pdf

  12. miRCURY LNA microRNA Array Hi-Power Labeling Kit [Internet]. http://www.exiqon.com/ls/Documents/Scientific/Hi-Power-Labeling-kit-manual.pdf

  13. Vester B, Wengel J (2004) LNA (locked nucleic acid): high-affinity targeting of complementary RNA and DNA. Biochemistry (Mosc) 43(42):13233–13241

    Article  CAS  Google Scholar 

  14. Kauppinen S, Vester B, Wengel J (2006) Locked nucleic acid: high-affinity targeting of complementary RNA for RNomics. Handb Exp Pharmacol 173:405–422

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the GEN-AU project “non-coding RNAs” (no. 820982), the Austrian Science Fund (FWF, P25729-B19), and by the EU FP7 project DIABAT (HEALTH-F2-2011-278373).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Scheideler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Karbiener, M., Scheideler, M. (2015). Microarray Analysis of Small Non-Coding RNAs. In: Rederstorff, M. (eds) Small Non-Coding RNAs. Methods in Molecular Biology, vol 1296. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2547-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2547-6_15

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2546-9

  • Online ISBN: 978-1-4939-2547-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics