Skip to main content

miR-RACE: An Effective Approach to Accurately Determine the Sequence of Computationally Identified miRNAs

  • Protocol
Small Non-Coding RNAs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1296))

Abstract

Computational prediction of microRNAs (miRNAs) is one of the most important approaches in microRNA studies. While validation of the predicted microRNAs’ precise sequences is essential for further studies on their biogenesis, evolution, and functions, computational miRNA prediction methods, however, often fail to predict the accurate sequence of the mature miRNA within the precursor at the nucleotide precision level. Here, we depict a highly efficient method for determining the precise sequences of computationally predicted miRNAs. The method combines the generation of miRNA-enriched libraries, with 5′- and 3′-end adaptors being linked to the miRNA molecules, the reverse transcription of small RNAs with an oligo-d(T) anchor primer, two specific 5′- and 3′-miRNA-RACE (miR-RACE) PCR reactions and sequence-directed cloning. The efficiency of this method was demonstrated by the precise sequence validation of computationally predicted miRNAs in citrus, apple, and other fruit crops. Our ongoing research indicates that miR-RACE is also very useful to verify the sequences of putative miRNAs obtained by deep sequencing of small RNA libraries. The protocol of miR-RACE is rapid and can be completed within 2–3 days. miR-RACE should make the bioinformatic prediction of miRNAs more powerful and accurate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartel B, Bartel DP (2003) MicroRNAs: at the root of plant development? Plant Physiol 13:709–717

    Article  Google Scholar 

  2. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  3. Mallory AC, Vaucheret H (2004) MicroRNAs: something important between the genes. Curr Opin Plant Biol 7:120–125

    Article  CAS  PubMed  Google Scholar 

  4. Carrington JC, Ambros V (2003) Role of microRNAs in plant and animal development. Science 301:336–338

    Article  CAS  PubMed  Google Scholar 

  5. Hunter C, Poethig RS (2003) Missing links: miRNAs and plant development. Curr Opin Genet Dev 13:372–378

    Article  CAS  PubMed  Google Scholar 

  6. Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Article  CAS  PubMed  Google Scholar 

  7. Mallory AC, Bouche N (2008) MicroRNA-directed regulation to cleave or not to cleave. Trends Plant Sci 13:359–367

    Article  CAS  PubMed  Google Scholar 

  8. Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Science 320:1185–1190

    Article  CAS  PubMed  Google Scholar 

  10. Zhang BH, Pan XP, Cannon CH, Cobb GP, Anderson TA (2006) Conservation and divergence of plant microRNA genes. Plant J 46:243–259

    Article  CAS  PubMed  Google Scholar 

  11. Zhang BH, Pan XP, Wang QL, Cobb GP, Anderson TA (2006) Computational identification of microRNAs and their targets. Comput Biol Chem 30:395–407

    Article  CAS  PubMed  Google Scholar 

  12. Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    Article  CAS  PubMed  Google Scholar 

  13. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D et al (2008) Criteria for annotation of plant microRNAs. Plant Cell 20:3186–3190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Sunkar R, Jagadeeswaran G (2008) In silico identification of conserved microRNAs in large number of diverse plant species. BMC Plant Biol 8:37

    Article  PubMed Central  PubMed  Google Scholar 

  16. Wang C, Shangguan LF, Nicholas KK, Wang XC, Han J, Song CN, Fang JG (2011) Characterization of microRNAs identified in a table grapevine cultivar with validation of computationally predicted grapevine miRNAs by miRRACE. PLoS One 6:e21259

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Carra A, Mica E, Gambino G, Pindo M, Moser C, Pè ME, Schubert A (2009) Cloning and characterization of small non-coding RNAs from grapevine. Plant J 59:750–763

    Article  CAS  PubMed  Google Scholar 

  18. Jung JH, Park CM (2007) MIR166/165 genes exhibit dynamic expression patterns in regulating shoot apical meristem and floral development in Arabidopsis. Planta 225:1327–1338

    Article  CAS  PubMed  Google Scholar 

  19. Yamaguchi A, Wu MR, Yang L, Wu G, Poethig RS et al (2009) The microRNA-regulated SBP-Box transcription factor SPL3 is a direct upstream activator of LEAFY, FRUITFULL, and APETALA1. Cell 17:268–278

    CAS  Google Scholar 

  20. Yin Z, Li CH, Han XL, Shen FF (2008) Identification of conserved microRNAs and their target genes in tomato (Lycopersicon esculentum). Gene 414:60–66

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (NSFC) (No. 31301759), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the National Science Foundation of China (No. 60901053), and the Nanjing Agricultural University Youth Science and Technology Innovation Fund (KJ2013013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinggui Fang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wang, C., Fang, J. (2015). miR-RACE: An Effective Approach to Accurately Determine the Sequence of Computationally Identified miRNAs. In: Rederstorff, M. (eds) Small Non-Coding RNAs. Methods in Molecular Biology, vol 1296. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2547-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2547-6_11

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2546-9

  • Online ISBN: 978-1-4939-2547-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics