Advertisement

cAMP Signaling pp 103-115 | Cite as

Adenoviral Transduction of FRET-Based Biosensors for cAMP in Primary Adult Mouse Cardiomyocytes

  • Oliver Lomas
  • Marcella Brescia
  • Ricardo Carnicer
  • Stefania Monterisi
  • Nicoletta C. Surdo
  • Manuela ZaccoloEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1294)

Abstract

Genetically encoded biosensors that make use of fluorescence resonance energy transfer (FRET) are important tools for the study of compartmentalized cyclic nucleotide signaling in living cells. With the advent of germ line and tissue-specific transgenic technologies, the adult mouse represents a useful tool for the study of cardiovascular pathophysiology. The use of FRET-based genetically encoded biosensors coupled with this animal model represents a powerful combination for the study of cAMP signaling in live primary cardiomyocytes. In this chapter, we describe the steps required during the isolation, viral transduction, and culture of cardiomyocytes from an adult mouse to obtain reliable expression of genetically encoded FRET biosensors for the study of cAMP signaling in living cells.

Keywords

Primary cardiomyocyte Mouse Adenovirus cAMP FRET Live-cell imaging 

Notes

Acknowledgments

This study was supported by the British Heart Foundation (PG/10/75/28537 and RG/12/3/29423) and the NSF-NIH CRCNS program (NIH R01 AA18060) to MZ and Wellcome Trust PhD Programme for Clinicians at the University of Oxford to OCL.

References

  1. 1.
    Tsien RW (1977) Cyclic AMP and contractile activity in heart. Adv Cyclic Nucleotide Res 8:363–420PubMedGoogle Scholar
  2. 2.
    Miki N, Baraban JM, Keirns JJ, Boyce JJ, Bitensky MW (1975) Purification and properties of the light-activated cyclic nucleotide phosphodiesterase of rod outer segments. J Biol Chem 250(16):6320–6327PubMedGoogle Scholar
  3. 3.
    Northrop G, Parks RE Jr (1964) 3′, 5′-Amp-induced hyperglycemia in intact rats and in the isolated perfused rat liver. Biochem Pharmacol 13:120–123CrossRefPubMedGoogle Scholar
  4. 4.
    Zaccolo M, Pozzan T (2002) Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. Science 295(5560):1711–1715. doi: 10.1126/science.1069982 CrossRefPubMedGoogle Scholar
  5. 5.
    Adams SR, Harootunian AT, Buechler YJ, Taylor SS, Tsien RY (1991) Fluorescence ratio imaging of cyclic AMP in single cells. Nature 349(6311):694–697CrossRefPubMedGoogle Scholar
  6. 6.
    Zaccolo M, De Giorgi F, Cho CY, Feng L, Knapp T, Negulescu PA, Taylor SS, Tsien RY, Pozzan T (2000) A genetically encoded, fluorescent indicator for cyclic AMP in living cells. Nat Cell Biol 2(1):25–29. doi: 10.1038/71345 CrossRefPubMedGoogle Scholar
  7. 7.
    Nikolaev VO, Bunemann M, Schmitteckert E, Lohse MJ, Engelhardt S (2006) Cyclic AMP imaging in adult cardiac myocytes reveals far-reaching beta1-adrenergic but locally confined beta2-adrenergic receptor-mediated signaling. Circ Res 99(10):1084–1091. doi: 10.1161/01.RES.0000250046.69918.d5 CrossRefPubMedGoogle Scholar
  8. 8.
    Pavlovic D, McLatchie LM, Shattock MJ (2010) The rate of loss of T-tubules in cultured adult ventricular myocytes is species dependent. Exp Physiol 95(4):518–527. doi: 10.1113/expphysiol.2009.052126 CrossRefPubMedGoogle Scholar
  9. 9.
    Gesellchen F, Stangherlin A, Surdo N, Terrin A, Zoccarato A, Zaccolo M (2011) Measuring spatiotemporal dynamics of cyclic AMP signaling in real-time using FRET-based biosensors. Methods Mol Biol 746:297–316. doi: 10.1007/978-1-61779-126-0_16 CrossRefPubMedGoogle Scholar
  10. 10.
    Louch WE, Sheehan KA, Wolska BM (2011) Methods in cardiomyocyte isolation, culture, and gene transfer. J Mol Cell Cardiol 51(3):288–298. doi: 10.1016/j.yjmcc.2011.06.012 CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Li Z, Sharma RV, Duan D, Davisson RL (2003) Adenovirus-mediated gene transfer to adult mouse cardiomyocytes is selectively influenced by culture medium. J Gene Med 5(9):765–772. doi: 10.1002/jgm.405 CrossRefPubMedGoogle Scholar
  12. 12.
    Tian Q, Pahlavan S, Oleinikow K, Jung J, Ruppenthal S, Scholz A, Schumann C, Kraegeloh A, Oberhofer M, Lipp P, Kaestner L (2012) Functional and morphological preservation of adult ventricular myocytes in culture by sub-micromolar cytochalasin D supplement. J Mol Cell Cardiol 52(1):113–124CrossRefPubMedGoogle Scholar
  13. 13.
    Eng J, Lynch RM, Balaban RS (1989) Nicotinamide adenine dinucleotide fluorescence spectroscopy and imaging of isolated cardiac myocytes. Biophys J 55(4):621–630. doi: 10.1016/s0006-3495(89)82859-0 CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, Miyawaki A (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20(1):87–90. doi: 10.1038/nbt0102-87 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Oliver Lomas
    • 1
    • 2
  • Marcella Brescia
    • 2
  • Ricardo Carnicer
    • 1
  • Stefania Monterisi
    • 2
  • Nicoletta C. Surdo
    • 2
  • Manuela Zaccolo
    • 2
    Email author
  1. 1.Department of Cardiovascular Medicine, John Radcliffe HospitalUniversity of OxfordOxfordUK
  2. 2.Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK

Personalised recommendations