Skip to main content

Imaging Sub-plasma Membrane cAMP Dynamics with Fluorescent Translocation Reporters

  • Protocol
  • First Online:
cAMP Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1294))

Abstract

Imaging cAMP dynamics in single cells and tissues can provide important insights into the regulation of a variety of cellular processes. In recent years, a large number of tools for cAMP measurements have been developed. While most cAMP reporters are designed to undergo changes in fluorescence resonance energy transfer (FRET), there are alternative techniques with advantages for certain applications. Here, we describe protocols for cAMP measurements in the sub-plasma membrane space based on the detection of the cAMP-induced translocation of engineered fluorescent protein-tagged subunits of protein kinase A between the cytoplasm and the plasma membrane. Total internal reflection fluorescence (TIRF) imaging of the changes in reporter localization yields robust signal changes and has contributed to the discovery of cAMP oscillations in the sub-plasma membrane space of insulin-secreting β-cells stimulated with glucose and gluco-incretin hormones. We also demonstrate how the technique can be combined with measurements of the cytosolic Ca2+ concentration or with recordings of the subcellular localization of the cAMP effector protein Epac2. The translocation reporter approach provides a valuable complement to other methods for imaging sub-membrane cAMP dynamics in various types of cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529

    Article  CAS  PubMed  Google Scholar 

  2. Willoughby D, Cooper DM (2008) Live-cell imaging of cAMP dynamics. Nat Methods 5:29–36

    Article  CAS  PubMed  Google Scholar 

  3. Berrera M, Dodoni G, Monterisi S et al (2008) A toolkit for real-time detection of cAMP: insights into compartmentalized signaling. Handb Exp Pharmacol 186:285–298

    Article  CAS  PubMed  Google Scholar 

  4. Adams SR, Harootunian AT, Buechler YJ et al (1991) Fluorescence ratio imaging of cyclic AMP in single cells. Nature 349:694–697

    Article  CAS  PubMed  Google Scholar 

  5. Zaccolo M, De Giorgi F, Cho CY et al (2000) A genetically encoded, fluorescent indicator for cyclic AMP in living cells. Nat Cell Biol 2:25–29

    Article  CAS  PubMed  Google Scholar 

  6. Zaccolo M, Pozzan T (2002) Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. Science 295:1711–1715

    Article  CAS  PubMed  Google Scholar 

  7. Nikolaev VO, Bunemann M, Hein L et al (2004) Novel single chain cAMP sensors for receptor-induced signal propagation. J Biol Chem 279:37215–37218

    Article  CAS  PubMed  Google Scholar 

  8. Nikolaev VO, Bunemann M, Schmitteckert E et al (2006) Cyclic AMP imaging in adult cardiac myocytes reveals far-reaching beta1-adrenergic but locally confined beta2-adrenergic receptor-mediated signaling. Circ Res 99:1084–1091

    Article  CAS  PubMed  Google Scholar 

  9. Ponsioen B, Zhao J, Riedl J et al (2004) Detecting cAMP-induced Epac activation by fluorescence resonance energy transfer: Epac as a novel cAMP indicator. EMBO Rep 5:1176–1180

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. DiPilato LM, Cheng X, Zhang J (2004) Fluorescent indicators of cAMP and Epac activation reveal differential dynamics of cAMP signaling within discrete subcellular compartments. Proc Natl Acad Sci U S A 101:16513–16518

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Piston DW, Kremers GJ (2007) Fluorescent protein FRET: the good, the bad and the ugly. Trends Biochem Sci 32:407–414

    Article  CAS  PubMed  Google Scholar 

  12. Vogel SS, Thaler C, Koushik SV (2006) Fanciful FRET. Sci STKE 2006:re2. doi:10.1126/stke.3312006re3312002

    PubMed  Google Scholar 

  13. Rich TC, Fagan KA, Nakata H et al (2000) Cyclic nucleotide-gated channels colocalize with adenylyl cyclase in regions of restricted cAMP diffusion. J Gen Physiol 116:147–161

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Dyachok O, Isakov Y, Sågetorp J et al (2006) Oscillations of cyclic AMP in hormone-stimulated insulin-secreting β-cells. Nature 439:349–352

    Article  CAS  PubMed  Google Scholar 

  15. Scott JD, Dessauer CW, Tasken K (2013) Creating order from chaos: cellular regulation by kinase anchoring. Annu Rev Pharmacol Toxicol 53:187–210

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Steyer JA, Almers W (2001) A real-time view of life within 100 nm of the plasma membrane. Nat Rev Mol Cell Biol 2:268–275

    Article  CAS  PubMed  Google Scholar 

  17. Dyachok O, Idevall-Hagren O, Sågetorp J et al (2008) Glucose-induced cyclic AMP oscillations regulate pulsatile insulin secretion. Cell Metab 8:26–37

    Article  CAS  PubMed  Google Scholar 

  18. Tian G, Sandler S, Gylfe E et al (2011) Glucose- and hormone-induced cAMP oscillations in α- and β-cells within intact pancreatic islets. Diabetes 60:1535–1543

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Tian G, Sågetorp J, Xu Y et al (2012) Role of phosphodiesterases in the shaping of sub-plasma membrane cAMP oscillations and pulsatile insulin secretion. J Cell Sci 125:5084–5095

    Article  CAS  PubMed  Google Scholar 

  20. Li J, Shuai HY, Gylfe E et al (2013) Oscillations of sub-membrane ATP in glucose-stimulated beta cells depend on negative feedback from Ca2+. Diabetologia 56:1577–1586

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Hansen C, Howlin J, Tengholm A et al (2009) Wnt-5a-induced phosphorylation of DARPP-32 inhibits breast cancer cell migration in a CREB-dependent manner. J Biol Chem 284:27533–27543

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Malmersjö S, Liste I, Dyachok O et al (2010) Ca2+ and cAMP signaling in human embryonic stem cell-derived dopamine neurons. Stem Cells Dev 19:1355–1364

    Article  PubMed  Google Scholar 

  23. Idevall-Hagren O, Barg S, Gylfe E et al (2010) cAMP mediators of pulsatile insulin secretion from glucose-stimulated single β-cells. J Biol Chem 285:23007–23018

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Idevall Hagren O, Jakobsson I, Xu Y et al (2013) Spatial control of Epac2 activity by cAMP and Ca2+-mediated activation of Ras. Sci Signal 6:ra29. doi:10.1126/scisignal.2003932

    Article  PubMed  Google Scholar 

  25. Miyazaki J, Araki K, Yamato E et al (1990) Establishment of a pancreatic β cell line that retains glucose-inducible insulin secretion: special reference to expression of glucose transporter isoforms. Endocrinology 127:126–132

    Article  CAS  PubMed  Google Scholar 

  26. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  Google Scholar 

  27. Zhao Y, Araki S, Wu J et al (2011) An expanded palette of genetically encoded Ca2+ indicators. Science 333:1888–1891

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Akerboom J, Carreras Calderon N, Tian L et al (2013) Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Front Mol Neurosci 6:2. doi:10.3389/fnmol.2013.00002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Drs Hongyan Shuai and Geng Tian for their help with the preparation of Figs. 3 and Fig. 4. The authors’ work is supported by grants from the European Foundation for the Study of Diabetes, the family Ernfors Foundation, the Novo Nordisk Foundation, the Swedish Diabetes Association, and the Swedish Research Council (67X-14643, 67P-21262, 325-2012-6778, 524-2013-298).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Tengholm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Tengholm, A., Idevall-Hagren, O. (2015). Imaging Sub-plasma Membrane cAMP Dynamics with Fluorescent Translocation Reporters. In: Zaccolo, M. (eds) cAMP Signaling. Methods in Molecular Biology, vol 1294. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2537-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2537-7_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2536-0

  • Online ISBN: 978-1-4939-2537-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics