Skip to main content

Automated Image Analysis of FRET Signals for Subcellular cAMP Quantification

  • Protocol
  • First Online:
cAMP Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1294))

Abstract

A variety of FRET probes have been developed to examine cAMP localization and dynamics in single cells. These probes offer a readily accessible approach to measure localized cAMP signals. However, given the low signal-to-noise ratio of most FRET probes and the dynamic nature of the intracellular environment, there have been marked limitations in the ability to use FRET probes to study localized signaling events within the same cell. Here, we outline a methodology to dissect kinetics of cAMP-mediated FRET signals in single cells using automated image analysis approaches. We additionally extend these approaches to the analysis of subcellular regions. These approaches offer an unique opportunity to assess localized cAMP kinetics in an unbiased, quantitative fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Förster T (1948) Zwischenmolekulare energiewanderung und fluoreszenz. Ann Phys 437:55–75

    Article  Google Scholar 

  2. Clegg RM (1995) Fluorescence resonance energy transfer. Curr Opin Biotechnol 6:103–110

    Article  CAS  PubMed  Google Scholar 

  3. Zaccolo M (2004) Use of chimeric fluorescent proteins and fluorescence resonance energy transfer to monitor cellular responses. Circ Res 94:866–873

    Article  CAS  PubMed  Google Scholar 

  4. Mongillo M, McSorley T, Evellin S et al (2004) Fluorescence resonance energy transfer–based analysis of cAMP dynamics in live neonatal rat cardiac myocytes reveals distinct functions of compartmentalized phosphodiesterases. Circ Res 95:67–75

    Article  CAS  PubMed  Google Scholar 

  5. Ponsioen B, Zhao J, Riedl J et al (2004) Detecting cAMP-induced Epac activation by fluorescence resonance energy transfer: Epac as a novel cAMP indicator. EMBO Rep 5:1176–1180

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Nikolaev VO, Bünemann M, Hein L et al (2004) Novel single chain cAMP sensors for receptor-induced signal propagation. J Biol Chem 279:37215–37218

    Article  CAS  PubMed  Google Scholar 

  7. Nikolaev VO, Gambaryan S, Lohse MJ (2006) Fluorescent sensors for rapid monitoring of intracellular cGMP. Nat Methods 3:23–25

    Article  CAS  PubMed  Google Scholar 

  8. Honda A, Adams SR, Sawyer CL et al (2001) Spatiotemporal dynamics of guanosine 3′, 5′-cyclic monophosphate revealed by a genetically encoded, fluorescent indicator. Proc Natl Acad Sci 98:2437–2442

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Leavesley SJ, Britain A, Cichon LK et al (2013) Assessing FRET using spectral techniques. Cytometry A 83:898–912

    PubMed  Google Scholar 

  10. Rich TC, Britain AL, Stedman T et al (2013) Hyperspectral imaging of FRET-based cGMP probes. In: Krieg T, Lukowski R (eds) Guanylate cyclase and cyclic GMP: methods and protocols, vol 1020, 1st edn, Methods in molecular biology. Springer Science+Business Media, LLC, New York. ISBN 1627034587

    Google Scholar 

  11. Zimmermann T, Rietdorf J, Girod A et al (2002) Spectral imaging and linear un-mixing enables improved FRET efficiency with a novel GFP2–YFP FRET pair. FEBS Lett 531:245–249

    Article  CAS  PubMed  Google Scholar 

  12. Carpenter AE, Jones TR, Lamprecht MR et al (2006) CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7:R100

    Article  PubMed Central  PubMed  Google Scholar 

  13. Leavesley SJ, Annamdevula N, Boni J et al (2012) Hyperspectral imaging microscopy for identification and quantitative analysis of fluorescently-labeled cells in highly autofluorescent tissue. J Biophotonics 5:67–84

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Favreau PF, Hernandez C, Lindsey AS et al (2014) Tunable thin-film optical filters for hyperspectral microscopy. J Biomed Opt 19:011017-1–011017-11

    Article  Google Scholar 

  15. Börner S, Schwede F, Schlipp A et al (2011) FRET measurements of intracellular cAMP concentrations and cAMP analog permeability in intact cells. Nat Protoc 6:427–438

    Article  PubMed  Google Scholar 

  16. Gordon GW, Berry G, Liang XH et al (1998) Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophys J 74:2702–2713

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Sun Y, Hays NM, Periasamy A et al (2012) Monitoring protein interactions in living cells with fluorescence lifetime imaging microscopy. Methods Enzymol 504:371

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Gu Y, Di W, Kelsell D et al (2004) Quantitative fluorescence resonance energy transfer (FRET) measurement with acceptor photobleaching and spectral unmixing. J Microsc 215:162–173

    Article  CAS  PubMed  Google Scholar 

  19. Leavesley SJ, Gao Y, Nakhmani A (submitted) Spectral image cytometry for automated subcellular cyclic nucleotide measurements. Front Physiol Vasc Physiol

    Google Scholar 

  20. Berney C, Danuser G (2003) FRET or no FRET: a quantitative comparison. Biophys J 84:3992–4010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Klarenbeek JB, Goedhart J, Hink MA et al (2011) A mTurquoise-based cAMP sensor for both FLIM and ratiometric read-out has improved dynamic range. PLoS One 6:e19170

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Novo D, Grégori G, Rajwa B (2013) Generalized unmixing model for multispectral flow cytometry utilizing nonsquare compensation matrices. Cytometry A 83A:508–520

    Article  CAS  Google Scholar 

  23. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  PubMed  Google Scholar 

  24. Sommer C, Straehle C, Kothe U et al (2011) Ilastik: interactive learning and segmentation toolkit. In: IEEE. ISBN: 1424441277, pp 230–233

    Google Scholar 

  25. Rich TC, Webb KJ, Leavesley SJ (2014) Can we decipher the information content contained within cyclic nucleotide signals? J Gen Physiol 143:17–27

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Feinstein WP, Zhu B, Leavesley SJ et al (2012) Assessment of cellular mechanisms contributing to cAMP compartmentalization in pulmonary microvascular endothelial cells. Am J Physiol Cell Physiol 302:C839–C852

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Beavo J, Bechtel P, Krebs E (1974) Activation of protein kinase by physiological concentrations of cyclic AMP. Proc Natl Acad Sci 71:3580–3583

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Ljosa V, Carpenter AE (2009) Introduction to the quantitative analysis of two-dimensional fluorescence microscopy images for cell-based screening. PLoS Comput Biol 5:e1000603

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by NIH grants P01 HL066299 and S10 RR027535, and the Abraham Mitchell Cancer Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silas J. Leavesley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Leavesley, S.J., Nakhmani, A., Gao, Y., Rich, T.C. (2015). Automated Image Analysis of FRET Signals for Subcellular cAMP Quantification. In: Zaccolo, M. (eds) cAMP Signaling. Methods in Molecular Biology, vol 1294. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2537-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2537-7_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2536-0

  • Online ISBN: 978-1-4939-2537-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics