Advertisement

Recording Intracellular cAMP Levels with EPAC-Based FRET Sensors by Fluorescence Lifetime Imaging

  • Marcel Raspe
  • Jeffrey Klarenbeek
  • Kees JalinkEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1294)

Abstract

Eukaryotic cells use second messengers such as Ca2+, IP3, cGMP, and cAMP to transduce extracellular signals like hormones, via membrane receptors to downstream cellular effectors. FRET-based sensors are ideal to visualize and measure these rapid changes of second messenger concentrations in time and place. Here, we describe the use of EPAC-based FRET sensors to measure cAMP with spatiotemporal resolution in cells by fluorescence lifetime imaging (FLIM).

Keywords

FLIM FRET cAMP EPAC Live-cell FLIM 

References

  1. 1.
    Wang Y, Chen CL, Iijima M (2011) Signaling mechanisms for chemotaxis. Dev Growth Differ 53:495–502CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Halls ML, Cooper DMF (2011) Regulation by Ca2+-signaling pathways of adenylyl cyclases. Cold Spring Harb Perspect Biol 3:1–22CrossRefGoogle Scholar
  3. 3.
    Gancedo JM (2013) Biological roles of cAMP: variations on a theme in the different kingdoms of life. Biol Rev Camb Philos Soc 88:645–668CrossRefPubMedGoogle Scholar
  4. 4.
    Francis SH, Blount MA, Corbin JD (2011) Mammalian cyclic nucleotide phosphodiesterases : molecular mechanisms and physiological functions. Physiol Rev 91:651–690CrossRefPubMedGoogle Scholar
  5. 5.
    Soderling SH, Beavo JA (2000) Regulation of cAMP and cGMP signaling: new phosphodiesterases and new functions. Curr Opin Cell Biol 12:174–179CrossRefPubMedGoogle Scholar
  6. 6.
    Forster T (1948) Zwischenmolekulare energiewanderung und fluoreszenz. Ann Phys 437:55–75CrossRefGoogle Scholar
  7. 7.
    Van Rheenen J, Langeslag M, Jalink K (2004) Correcting confocal acquisition to optimize imaging of fluorescence resonance energy transfer by sensitized emission. Biophys J 86:2517–2529CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Jalink K, Van Rheenen J (2009) FRET and FLIM techniques. In: Laboratory techniques in biochemistry and molecular biology. 1st ed., 33, Gadella TWJ (ed) Elesvier B.V. Amsterdam, Netherlands pp. 289–349Google Scholar
  9. 9.
    Becker W, Bergmann A, Hink M, König K, Benndorf K, Biskup C (2004) Fluorescence lifetime imaging by time-correlated single-photon counting. Microsc Res Tech 63:58–66CrossRefPubMedGoogle Scholar
  10. 10.
    Spencer RD, Weber G (1969) Measurements of subnanosecond fluorescence with a cross-correlation phase fluorometer. Ann N Y Acad Sci 158:361–376CrossRefGoogle Scholar
  11. 11.
    Gadella TWJ, Jovin TM, Clegg RM (1993) Fluorescence lifetime imaging microscopy (FLIM): spatial resolution of microstructures on the nanosecond time scale. Biophys Chem 48:221–239CrossRefGoogle Scholar
  12. 12.
    Schneider PC, Clegg RM (1997) Rapid acquisition, analysis, and display of fluorescence lifetime-resolved images for real-time applications. Rev Sci Instrum 68:4107–4119CrossRefGoogle Scholar
  13. 13.
    Aravind L, Ponting C (1997) The GAF domain: an evolutionary link between diverse phototransducing proteins. Trends Biochem Sci 22:458–459CrossRefPubMedGoogle Scholar
  14. 14.
    Zoraghi R, Corbin JD, Francis SH (2004) Properties and functions of GAF domains in cyclic nucleotide phosphodiesterases and other proteins. Mol Pharmacol 65:267–278CrossRefPubMedGoogle Scholar
  15. 15.
    Miyawaki A, Llopis J, Heim R, Mccaffery JM, Adams JA, Ikura M, Tsien RY (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882–887CrossRefPubMedGoogle Scholar
  16. 16.
    Mank M, Reiff DF, Heim N, Friedrich MW, Borst A, Griesbeck O, Zellula AG (2006) A FRET-based calcium biosensor with fast signal kinetics and high fluorescence change. Biophys J 90:1790–1796CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Honda A, Sawyer CL, Cawley SM, Dostmann WRG (2005) Cygnets In: Phosphodiesterase Methods and Protocols, 307, Lugnier C (ed.). Humana Press Inc., Totowa, NJ, pp. 27–43Google Scholar
  18. 18.
    Nikolaev VO, Gambaryan S, Lohse MJ (2006) Fluorescent sensors for rapid monitoring of intracellular cGMP. Nat Methods 3:23–25CrossRefPubMedGoogle Scholar
  19. 19.
    Adams RS, Harootunian TA, Buechler YJ, Taylor SS, Tsien RY (1991) Fluorescence ratio imaging of cyclic AMP in single cells. Nature 349:694–697CrossRefPubMedGoogle Scholar
  20. 20.
    Dipilato LM, Cheng X, Zhang J (2004) Fluorescent indicators of cAMP and Epac activation reveal differential dynamics of cAMP signaling within discrete subcellular compartments. Proc Natl Acad Sci U S A 101:16513–16518CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Ponsioen B, Zhao J, Riedl J, Zwartkruis F, van der Krogt G, Zaccolo M, Moolenaar WH, Bos JL, Jalink K (2004) Detecting cAMP-induced Epac activation by fluorescence resonance energy transfer: Epac as a novel cAMP indicator. EMBO Rep 5:1176–1180CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Zhang CL, Katoh M, Shibasaki T, Minami K, Sunaga Y, Takahashi H, Yokoi N, Iwasaki M, Miki T, Seino S (2009) The cAMP sensor Epac2 is a direct target of antidiabetic sulfonylurea drugs. Science 325:607–610CrossRefPubMedGoogle Scholar
  23. 23.
    Klarenbeek J, Jalink K (2014) Detecting cAMP with an epac-based FRET sensor in single living cells. In: Zhang J, Ni Q, Newman RH Methods in molecular biology, (eds) 1071. Humana Press, Totowa, NJ, pp 49–58Google Scholar
  24. 24.
    Rehmann H, Prakash B, Wolf E, Rueppel A, de Rooij J, Bos JL, Wittinghofer A, Rooij JD (2003) Structure and regulation of the cAMP-binding domains of Epac2. Nat Struct Biol 10:26–32CrossRefPubMedGoogle Scholar
  25. 25.
    Nikolaev VO, Bünemann M, Hein L, Hannawacker A, Lohse MJ (2004) Novel single chain cAMP sensors for receptor-induced signal propagation. J Biol Chem 279:37215–37218CrossRefPubMedGoogle Scholar
  26. 26.
    De Rooij J, Rehmann H, van Triest M, Cool RH, Wittinghofer A, Bos JL (2000) Mechanism of regulation of the Epac family of cAMP-dependent RapGEFs. J Biol Chem 275:20829–36CrossRefPubMedGoogle Scholar
  27. 27.
    Klarenbeek JB, Goedhart J, Hink MA, Gadella TWJ, Jalink K (2011) A mTurquoise-based cAMP sensor for both FLIM and ratiometric read-out has improved dynamic range. PLoS One 6:e19170CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Van der Krogt GNM, Ogink J, Ponsioen B, Jalink K (2008) A comparison of donor-acceptor pairs for genetically encoded FRET sensors: application to the Epac cAMP sensor as an example. PLoS One 3:e1916CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Goedhart J, von Stetten D, Noirclerc-Savoye M, Lelimousin M, Joosen L, Hink MA, van Weeren L, Gadella TWJ, Royant A (2012) Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%. Nat Commun 3:751, ncomms1738CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Elder AD, Matthews SM, Swartling J, Yunus K, Frank JH, Brennan CM, Fisher AC, Kaminski CF (2006) Application of frequency-domain fluorescence lifetime imaging microscopy as a quantitative analytical tool for microfluidic devices. Opt Express 14:5456–5467CrossRefPubMedGoogle Scholar
  31. 31.
    Digman MA, Caiolfa VR, Zamai M, Gratton E (2008) The phasor approach to fluorescence lifetime imaging analysis. Biophys J 94:L14–L16CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Redford GI, Clegg RM (2005) Polar plot representation for frequency-domain analysis of fluorescence lifetimes. J Fluoresc 15:805–815CrossRefPubMedGoogle Scholar
  33. 33.
    Eichorst, JP, Teng KW, Clegg, RM (2014) Polar plot representation of time-resolved fluorescence. Methods in molecular biology. 1076, Engelborghs V, Visser A (eds), Humana Press Inc., Totowa, NJ, pp. 97–112Google Scholar
  34. 34.
    Lakowicz JR, Szmacinski H, Nowaczyk K, Berndt KW, Johnson M (1992) Fluorescence lifetime imaging. Anal Biochem 202:316–330CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Cell BiologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
  2. 2.Department of Cell Biology and BiochemistryThe Netherlands Cancer InstituteAmsterdamThe Netherlands

Personalised recommendations