Skip to main content

Recording Intracellular cAMP Levels with EPAC-Based FRET Sensors by Fluorescence Lifetime Imaging

  • Protocol
  • First Online:
cAMP Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1294))

Abstract

Eukaryotic cells use second messengers such as Ca2+, IP3, cGMP, and cAMP to transduce extracellular signals like hormones, via membrane receptors to downstream cellular effectors. FRET-based sensors are ideal to visualize and measure these rapid changes of second messenger concentrations in time and place. Here, we describe the use of EPAC-based FRET sensors to measure cAMP with spatiotemporal resolution in cells by fluorescence lifetime imaging (FLIM).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang Y, Chen CL, Iijima M (2011) Signaling mechanisms for chemotaxis. Dev Growth Differ 53:495–502

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Halls ML, Cooper DMF (2011) Regulation by Ca2+-signaling pathways of adenylyl cyclases. Cold Spring Harb Perspect Biol 3:1–22

    Article  CAS  Google Scholar 

  3. Gancedo JM (2013) Biological roles of cAMP: variations on a theme in the different kingdoms of life. Biol Rev Camb Philos Soc 88:645–668

    Article  PubMed  Google Scholar 

  4. Francis SH, Blount MA, Corbin JD (2011) Mammalian cyclic nucleotide phosphodiesterases : molecular mechanisms and physiological functions. Physiol Rev 91:651–690

    Article  CAS  PubMed  Google Scholar 

  5. Soderling SH, Beavo JA (2000) Regulation of cAMP and cGMP signaling: new phosphodiesterases and new functions. Curr Opin Cell Biol 12:174–179

    Article  CAS  PubMed  Google Scholar 

  6. Forster T (1948) Zwischenmolekulare energiewanderung und fluoreszenz. Ann Phys 437:55–75

    Article  Google Scholar 

  7. Van Rheenen J, Langeslag M, Jalink K (2004) Correcting confocal acquisition to optimize imaging of fluorescence resonance energy transfer by sensitized emission. Biophys J 86:2517–2529

    Article  PubMed Central  PubMed  Google Scholar 

  8. Jalink K, Van Rheenen J (2009) FRET and FLIM techniques. In: Laboratory techniques in biochemistry and molecular biology. 1st ed., 33, Gadella TWJ (ed) Elesvier B.V. Amsterdam, Netherlands pp. 289–349

    Google Scholar 

  9. Becker W, Bergmann A, Hink M, König K, Benndorf K, Biskup C (2004) Fluorescence lifetime imaging by time-correlated single-photon counting. Microsc Res Tech 63:58–66

    Article  CAS  PubMed  Google Scholar 

  10. Spencer RD, Weber G (1969) Measurements of subnanosecond fluorescence with a cross-correlation phase fluorometer. Ann N Y Acad Sci 158:361–376

    Article  CAS  Google Scholar 

  11. Gadella TWJ, Jovin TM, Clegg RM (1993) Fluorescence lifetime imaging microscopy (FLIM): spatial resolution of microstructures on the nanosecond time scale. Biophys Chem 48:221–239

    Article  CAS  Google Scholar 

  12. Schneider PC, Clegg RM (1997) Rapid acquisition, analysis, and display of fluorescence lifetime-resolved images for real-time applications. Rev Sci Instrum 68:4107–4119

    Article  CAS  Google Scholar 

  13. Aravind L, Ponting C (1997) The GAF domain: an evolutionary link between diverse phototransducing proteins. Trends Biochem Sci 22:458–459

    Article  CAS  PubMed  Google Scholar 

  14. Zoraghi R, Corbin JD, Francis SH (2004) Properties and functions of GAF domains in cyclic nucleotide phosphodiesterases and other proteins. Mol Pharmacol 65:267–278

    Article  CAS  PubMed  Google Scholar 

  15. Miyawaki A, Llopis J, Heim R, Mccaffery JM, Adams JA, Ikura M, Tsien RY (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882–887

    Article  CAS  PubMed  Google Scholar 

  16. Mank M, Reiff DF, Heim N, Friedrich MW, Borst A, Griesbeck O, Zellula AG (2006) A FRET-based calcium biosensor with fast signal kinetics and high fluorescence change. Biophys J 90:1790–1796

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Honda A, Sawyer CL, Cawley SM, Dostmann WRG (2005) Cygnets In: Phosphodiesterase Methods and Protocols, 307, Lugnier C (ed.). Humana Press Inc., Totowa, NJ, pp. 27–43

    Google Scholar 

  18. Nikolaev VO, Gambaryan S, Lohse MJ (2006) Fluorescent sensors for rapid monitoring of intracellular cGMP. Nat Methods 3:23–25

    Article  CAS  PubMed  Google Scholar 

  19. Adams RS, Harootunian TA, Buechler YJ, Taylor SS, Tsien RY (1991) Fluorescence ratio imaging of cyclic AMP in single cells. Nature 349:694–697

    Article  CAS  PubMed  Google Scholar 

  20. Dipilato LM, Cheng X, Zhang J (2004) Fluorescent indicators of cAMP and Epac activation reveal differential dynamics of cAMP signaling within discrete subcellular compartments. Proc Natl Acad Sci U S A 101:16513–16518

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Ponsioen B, Zhao J, Riedl J, Zwartkruis F, van der Krogt G, Zaccolo M, Moolenaar WH, Bos JL, Jalink K (2004) Detecting cAMP-induced Epac activation by fluorescence resonance energy transfer: Epac as a novel cAMP indicator. EMBO Rep 5:1176–1180

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Zhang CL, Katoh M, Shibasaki T, Minami K, Sunaga Y, Takahashi H, Yokoi N, Iwasaki M, Miki T, Seino S (2009) The cAMP sensor Epac2 is a direct target of antidiabetic sulfonylurea drugs. Science 325:607–610

    Article  CAS  PubMed  Google Scholar 

  23. Klarenbeek J, Jalink K (2014) Detecting cAMP with an epac-based FRET sensor in single living cells. In: Zhang J, Ni Q, Newman RH Methods in molecular biology, (eds) 1071. Humana Press, Totowa, NJ, pp 49–58

    Google Scholar 

  24. Rehmann H, Prakash B, Wolf E, Rueppel A, de Rooij J, Bos JL, Wittinghofer A, Rooij JD (2003) Structure and regulation of the cAMP-binding domains of Epac2. Nat Struct Biol 10:26–32

    Article  CAS  PubMed  Google Scholar 

  25. Nikolaev VO, Bünemann M, Hein L, Hannawacker A, Lohse MJ (2004) Novel single chain cAMP sensors for receptor-induced signal propagation. J Biol Chem 279:37215–37218

    Article  CAS  PubMed  Google Scholar 

  26. De Rooij J, Rehmann H, van Triest M, Cool RH, Wittinghofer A, Bos JL (2000) Mechanism of regulation of the Epac family of cAMP-dependent RapGEFs. J Biol Chem 275:20829–36

    Article  PubMed  Google Scholar 

  27. Klarenbeek JB, Goedhart J, Hink MA, Gadella TWJ, Jalink K (2011) A mTurquoise-based cAMP sensor for both FLIM and ratiometric read-out has improved dynamic range. PLoS One 6:e19170

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Van der Krogt GNM, Ogink J, Ponsioen B, Jalink K (2008) A comparison of donor-acceptor pairs for genetically encoded FRET sensors: application to the Epac cAMP sensor as an example. PLoS One 3:e1916

    Article  PubMed Central  PubMed  Google Scholar 

  29. Goedhart J, von Stetten D, Noirclerc-Savoye M, Lelimousin M, Joosen L, Hink MA, van Weeren L, Gadella TWJ, Royant A (2012) Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%. Nat Commun 3:751, ncomms1738

    Article  PubMed Central  PubMed  Google Scholar 

  30. Elder AD, Matthews SM, Swartling J, Yunus K, Frank JH, Brennan CM, Fisher AC, Kaminski CF (2006) Application of frequency-domain fluorescence lifetime imaging microscopy as a quantitative analytical tool for microfluidic devices. Opt Express 14:5456–5467

    Article  CAS  PubMed  Google Scholar 

  31. Digman MA, Caiolfa VR, Zamai M, Gratton E (2008) The phasor approach to fluorescence lifetime imaging analysis. Biophys J 94:L14–L16

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Redford GI, Clegg RM (2005) Polar plot representation for frequency-domain analysis of fluorescence lifetimes. J Fluoresc 15:805–815

    Article  CAS  PubMed  Google Scholar 

  33. Eichorst, JP, Teng KW, Clegg, RM (2014) Polar plot representation of time-resolved fluorescence. Methods in molecular biology. 1076, Engelborghs V, Visser A (eds), Humana Press Inc., Totowa, NJ, pp. 97–112

    Google Scholar 

  34. Lakowicz JR, Szmacinski H, Nowaczyk K, Berndt KW, Johnson M (1992) Fluorescence lifetime imaging. Anal Biochem 202:316–330

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kees Jalink .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Raspe, M., Klarenbeek, J., Jalink, K. (2015). Recording Intracellular cAMP Levels with EPAC-Based FRET Sensors by Fluorescence Lifetime Imaging. In: Zaccolo, M. (eds) cAMP Signaling. Methods in Molecular Biology, vol 1294. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2537-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2537-7_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2536-0

  • Online ISBN: 978-1-4939-2537-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics