Advertisement

cAMP Signaling pp 203-217 | Cite as

Development of Computational Models of cAMP Signaling

  • Susana R. Neves-ZaphEmail author
  • Roy S. Song
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1294)

Abstract

Despite the growing evidence defining the cAMP signaling network as a master regulator of cellular function in a number of tissues, regulatory feedback loops, signal compartmentalization, as well as cross-talk with other signaling pathways make understanding the emergent properties of cAMP cellular action a daunting task. Dynamical models of signaling that combine quantitative rigor with molecular details can contribute valuable mechanistic insight into the complexity of intracellular cAMP signaling by complementing and guiding experimental efforts. In this chapter, we review the development of cAMP computational models. We describe how features of the cAMP network can be represented and review the types of experimental data useful in modeling cAMP signaling. We also compile a list of published cAMP models that can aid in the development of novel dynamical models of cAMP signaling.

Keywords

Computational modeling Systems biology cAMP Protein kinase A Phosphodiesterases Adenylyl cyclase 

References

  1. 1.
    Seino S, Shibasaki T (2005) PKA-dependent and PKA-independent pathways for cAMP-regulated exocytosis. Physiol Rev 85:1303–1342CrossRefPubMedGoogle Scholar
  2. 2.
    Zaccolo M (2009) cAMP signal transduction in the heart: understanding spatial control for the development of novel therapeutic strategies. Br J Pharmacol 158:50–60CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Daniel PB, Walker WH, Habener JF (1998) Cyclic AMP signaling and gene regulation. Annu Rev Nutr 18:353–383CrossRefPubMedGoogle Scholar
  4. 4.
    Sunahara RK, Dessauer CW, Gilman AG (1996) Complexity and diversity of mammalian adenylyl cyclases. Annu Rev Pharmacol Toxicol 36:461–480CrossRefPubMedGoogle Scholar
  5. 5.
    Kaupp UB, Seifert R (2002) Cyclic nucleotide-gated ion channels. Physiol Rev 82:769–824PubMedGoogle Scholar
  6. 6.
    Gloerich M, Bos JL (2010) Epac: defining a new mechanism for cAMP action. Annu Rev Pharmacol Toxicol 50:355–375CrossRefPubMedGoogle Scholar
  7. 7.
    Tasken K, Aandahl EM (2004) Localized effects of cAMP mediated by distinct routes of protein kinase A. Physiol Rev 84:137–167CrossRefPubMedGoogle Scholar
  8. 8.
    Bender AT, Beavo JA (2006) Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev 58:488–520CrossRefPubMedGoogle Scholar
  9. 9.
    Conti M, Mika D, Richter W (2014) Cyclic AMP compartments and signaling specificity: role of cyclic nucleotide phosphodiesterases. J Gen Physiol 143:29–38CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Steinberg SF, Brunton LL (2001) Compartmentation of G protein-coupled signaling pathways in cardiac myocytes. Annu Rev Pharmacol Toxicol 41:751–773CrossRefPubMedGoogle Scholar
  11. 11.
    Karpen JW (2014) Perspectives on: cyclic nucleotide microdomains and signaling specificity. J Gen Physiol 143:5–7CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Kapiloff MS, Rigatti M, Dodge-Kafka KL (2014) Architectural and functional roles of A kinase-anchoring proteins in cAMP microdomains. J Gen Physiol 143:9–15CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Neves SR, Tsokas P, Sarkar A et al (2008) Cell shape and negative links in regulatory motifs together control spatial information flow in signaling networks. Cell 133:666–680CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Rich TC, Webb KJ, Leavesley SJ (2014) Can we decipher the information content contained within cyclic nucleotide signals? J Gen Physiol 143:17–27CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Saucerman JJ, Greenwald EC, Polanowska-Grabowska R (2014) Mechanisms of cyclic AMP compartmentation revealed by computational models. J Gen Physiol 143:39–48CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Calebiro D, Nikolaev VO, Gagliani MC et al (2009) Persistent cAMP-signals triggered by internalized G-protein-coupled receptors. PLoS Biol 7:e1000172CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Song RS, Massenburg B, Wenderski W et al (2013) ERK regulation of phosphodiesterase 4 enhances dopamine-stimulated AMPA receptor membrane insertion. Proc Natl Acad Sci U S A 110:15437–15442CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Aldridge BB, Burke JM, Lauffenburger DA et al (2006) Physicochemical modelling of cell signalling pathways. Nat Cell Biol 8:1195–1203CrossRefPubMedGoogle Scholar
  19. 19.
    Greenwald EC, Polanowska-Grabowska RK, Saucerman JJ (2014) Integrating fluorescent biosensor data using computational models. Methods Mol Biol 1071:227–248CrossRefPubMedGoogle Scholar
  20. 20.
    Chen W, Levine H, Rappel WJ (2009) Compartmentalization of second messengers in neurons: a mathematical analysis. Phys Rev E Stat Nonlin Soft Matter Phys 80:041901CrossRefPubMedGoogle Scholar
  21. 21.
    Bhalla US (2004) Signaling in small subcellular volumes. I. Stochastic and diffusion effects on individual pathways. Biophys J 87:733–744CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Bhalla US (2004) Signaling in small subcellular volumes. II. Stochastic and diffusion effects on synaptic network properties. Biophys J 87:745–753CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Sample V, DiPilato LM, Yang JH et al (2012) Regulation of nuclear PKA revealed by spatiotemporal manipulation of cyclic AMP. Nat Chem Biol 8:375–382CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Iancu RV, Jones SW, Harvey RD (2007) Compartmentation of cAMP signaling in cardiac myocytes: a computational study. Biophys J 92:3317–3331CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Oliveira RF, Kim M, Blackwell KT (2012) Subcellular location of PKA controls striatal plasticity: stochastic simulations in spiny dendrites. PLoS Comput Biol 8:e1002383CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Alves R, Antunes F, Salvador A (2006) Tools for kinetic modeling of biochemical networks. Nat Biotechnol 24:667–672CrossRefPubMedGoogle Scholar
  27. 27.
    Blackwell KT (2013) Approaches and tools for modeling signaling pathways and calcium dynamics in neurons. J Neurosci Methods 220:131–140CrossRefPubMedGoogle Scholar
  28. 28.
    Tresguerres M, Levin LR, Buck J (2011) Intracellular cAMP signaling by soluble adenylyl cyclase. Kidney Int 79:1277–1288CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Sadana R, Dessauer CW (2009) Physiological roles for G protein-regulated adenylyl cyclase isoforms: insights from knockout and overexpression studies. Neurosignals 17:5–22CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Hanoune J, Defer N (2001) Regulation and role of adenylyl cyclase isoforms. Annu Rev Pharmacol Toxicol 41:145–174CrossRefPubMedGoogle Scholar
  31. 31.
    Bhalla US, Iyengar R (1999) Emergent properties of networks of biological signaling pathways. Science 283:381–387CrossRefPubMedGoogle Scholar
  32. 32.
    Omori K, Kotera J (2007) Overview of PDEs and their regulation. Circ Res 100:309–327CrossRefPubMedGoogle Scholar
  33. 33.
    Taylor SS, Zhang P, Steichen JM et al (2013) PKA: lessons learned after twenty years. Biochim Biophys Acta 1834:1271–1278CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Taylor SS, Buechler JA, Yonemoto W (1990) cAMP-dependent protein kinase: framework for a diverse family of regulatory enzymes. Annu Rev Biochem 59:971–1005CrossRefPubMedGoogle Scholar
  35. 35.
    Dostmann WR, Taylor SS (1991) Identifying the molecular switches that determine whether (Rp)-cAMPS functions as an antagonist or an agonist in the activation of cAMP-dependent protein kinase I. Biochemistry 30:8710–8716CrossRefPubMedGoogle Scholar
  36. 36.
    Ogreid D, Doskeland SO (1983) Cyclic nucleotides modulate the release of [3H] adenosine cyclic 3′,5′-phosphate bound to the regulatory moiety of protein kinase I by the catalytic subunit of the kinase. Biochemistry 22:1686–1696CrossRefPubMedGoogle Scholar
  37. 37.
    Ni Q, Ganesan A, Aye-Han NN et al (2011) Signaling diversity of PKA achieved via a Ca2+-cAMP-PKA oscillatory circuit. Nat Chem Biol 7:34–40CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Kim M, Huang T, Abel T et al (2010) Temporal sensitivity of protein kinase a activation in late-phase long term potentiation. PLoS Comput Biol 6:e1000691CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Zhang J, Allen MD (2007) FRET-based biosensors for protein kinases: illuminating the kinome. Mol BioSyst 3:759–765CrossRefPubMedGoogle Scholar
  40. 40.
    Harvey CD, Yasuda R, Zhong H et al (2008) The spread of Ras activity triggered by activation of a single dendritic spine. Science 321:136–140CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Lam AJ, St-Pierre F, Gong Y et al (2012) Improving FRET dynamic range with bright green and red fluorescent proteins. Nat Methods 9:1005–1012CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    Komatsu N, Aoki K, Yamada M et al (2011) Development of an optimized backbone of FRET biosensors for kinases and GTPases. Mol Biol Cell 22:4647–4656CrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    Klarenbeek JB, Goedhart J, Hink MA et al (2011) A mTurquoise-based cAMP sensor for both FLIM and ratiometric read-out has improved dynamic range. PLoS One 6:e19170CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    Sprenger JU, Nikolaev VO (2013) Biophysical techniques for detection of cAMP and cGMP in living cells. Int J Mol Sci 14:8025–8046CrossRefPubMedCentralPubMedGoogle Scholar
  45. 45.
    Stangherlin A, Koschinski A, Terrin A et al (2014) Analysis of compartmentalized cAMP: a method to compare signals from differently targeted FRET reporters. Methods Mol Biol 1071:59–71CrossRefPubMedGoogle Scholar
  46. 46.
    Borner S, Schwede F, Schlipp A et al (2011) FRET measurements of intracellular cAMP concentrations and cAMP analog permeability in intact cells. Nat Protoc 6:427–438CrossRefPubMedGoogle Scholar
  47. 47.
    Mironov SL, Skorova E, Taschenberger G et al (2009) Imaging cytoplasmic cAMP in mouse brainstem neurons. BMC Neurosci 10:29CrossRefPubMedCentralPubMedGoogle Scholar
  48. 48.
    Nausch LW, Ledoux J, Bonev AD et al (2008) Differential patterning of cGMP in vascular smooth muscle cells revealed by single GFP-linked biosensors. Proc Natl Acad Sci U S A 105:365–370CrossRefPubMedCentralPubMedGoogle Scholar
  49. 49.
    Dempsher DP, Gann DS, Phair RD (1984) A mechanistic model of ACTH-stimulated cortisol secretion. Am J Physiol 246:R587–R596PubMedGoogle Scholar
  50. 50.
    Rich TC, Fagan KA, Nakata H et al (2000) Cyclic nucleotide-gated channels colocalize with adenylyl cyclase in regions of restricted cAMP diffusion. J Gen Physiol 116:147–161CrossRefPubMedCentralPubMedGoogle Scholar
  51. 51.
    Rich TC, Fagan KA, Tse TE et al (2001) A uniform extracellular stimulus triggers distinct cAMP signals in different compartments of a simple cell. Proc Natl Acad Sci U S A 98:13049–13054CrossRefPubMedCentralPubMedGoogle Scholar
  52. 52.
    Saucerman JJ, Brunton LL, Michailova AP et al (2003) Modeling beta-adrenergic control of cardiac myocyte contractility in silico. J Biol Chem 278:47997–48003CrossRefPubMedGoogle Scholar
  53. 53.
    Ajay SM, Bhalla US (2004) A role for ERKII in synaptic pattern selectivity on the time-scale of minutes. Eur J Neurosci 20:2671–2680CrossRefPubMedGoogle Scholar
  54. 54.
    Hayer A, Bhalla US (2005) Molecular switches at the synapse emerge from receptor and kinase traffic. PLoS Comput Biol 1:137–154CrossRefPubMedGoogle Scholar
  55. 55.
    Rich TC, Xin W, Mehats C et al (2007) Cellular mechanisms underlying prostaglandin-induced transient cAMP signals near the plasma membrane of HEK-293 cells. Am J Physiol Cell Physiol 292:C319–C331CrossRefPubMedGoogle Scholar
  56. 56.
    Saucerman JJ, Zhang J, Martin JC et al (2006) Systems analysis of PKA-mediated phosphorylation gradients in live cardiac myocytes. Proc Natl Acad Sci U S A 103:12923–12928CrossRefPubMedCentralPubMedGoogle Scholar
  57. 57.
    Fernandez E, Schiappa R, Girault JA et al (2006) DARPP-32 is a robust integrator of dopamine and glutamate signals. PLoS Comput Biol 2:e176CrossRefPubMedCentralPubMedGoogle Scholar
  58. 58.
    Fridlyand LE, Harbeck MC, Roe MW et al (2007) Regulation of cAMP dynamics by Ca2+ and G protein-coupled receptors in the pancreatic beta-cell: a computational approach. Am J Physiol Cell Physiol 293:C1924–C1933CrossRefPubMedGoogle Scholar
  59. 59.
    Violin JD, DiPilato LM, Yildirim N et al (2008) beta2-adrenergic receptor signaling and desensitization elucidated by quantitative modeling of real time cAMP dynamics. J Biol Chem 283:2949–2961CrossRefPubMedGoogle Scholar
  60. 60.
    Cygnar KD, Zhao H (2009) Phosphodiesterase 1C is dispensable for rapid response termination of olfactory sensory neurons. Nat Neurosci 12:454–462CrossRefPubMedCentralPubMedGoogle Scholar
  61. 61.
    Nakano T, Doi T, Yoshimoto J et al (2010) A kinetic model of dopamine- and calcium-dependent striatal synaptic plasticity. PLoS Comput Biol 6:e1000670CrossRefPubMedCentralPubMedGoogle Scholar
  62. 62.
    Oliveira RF, Terrin A, Di Benedetto G et al (2010) The role of type 4 phosphodiesterases in generating microdomains of cAMP: large scale stochastic simulations. PLoS One 5:e11725CrossRefPubMedCentralPubMedGoogle Scholar
  63. 63.
    Heijman J, Volders PG, Westra RL et al (2011) Local control of beta-adrenergic stimulation: effects on ventricular myocyte electrophysiology and Ca(2+)-transient. J Mol Cell Cardiol 50:863–871CrossRefPubMedCentralPubMedGoogle Scholar
  64. 64.
    Xie M, Rich TC, Scheitrum C et al (2011) Inactivation of multidrug resistance proteins disrupts both cellular extrusion and intracellular degradation of cAMP. Mol Pharmacol 80:281–293CrossRefPubMedCentralPubMedGoogle Scholar
  65. 65.
    Kim M, Park AJ, Havekes R et al (2011) Colocalization of protein kinase A with adenylyl cyclase enhances protein kinase A activity during induction of long-lasting long-term-potentiation. PLoS Comput Biol 7:e1002084CrossRefPubMedCentralPubMedGoogle Scholar
  66. 66.
    Fridlyand LE, Philipson LH (2011) Coupling of metabolic, second messenger pathways and insulin granule dynamics in pancreatic beta-cells: a computational analysis. Prog Biophys Mol Biol 107:293–303CrossRefPubMedGoogle Scholar
  67. 67.
    Feinstein WP, Zhu B, Leavesley SJ et al (2012) Assessment of cellular mechanisms contributing to cAMP compartmentalization in pulmonary microvascular endothelial cells. Am J Physiol Cell Physiol 302:C839–C852CrossRefPubMedCentralPubMedGoogle Scholar
  68. 68.
    Azeloglu EU, Hardy SV, Eungdamrong NJ et al (2014) Interconnected network motifs control podocyte morphology and kidney function. Sci Signal 7:ra12CrossRefPubMedCentralPubMedGoogle Scholar
  69. 69.
    Agarwal SR, Yang PC, Rice M et al (2014) Role of membrane microdomains in compartmentation of cAMP signaling. PLoS One 9:e95835CrossRefPubMedCentralPubMedGoogle Scholar
  70. 70.
    Lindskog M, Kim M, Wikstrom MA et al (2006) Transient calcium and dopamine increase PKA activity and DARPP-32 phosphorylation. PLoS Comput Biol 2:e119CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of PharmacologyIcahn School of Medicine at Mount SinaiNew YorkUSA
  2. 2.Department of Systems TherapeuticsIcahn School of Medicine at Mount SinaiNew YorkUSA
  3. 3.Friedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkUSA
  4. 4.System Biology Center New YorkIcahn School of Medicine at Mount SinaiNew YorkUSA

Personalised recommendations