Advertisement

cAMP Signaling pp 137-150 | Cite as

Selective Disruption of the AKAP Signaling Complexes

  • Eileen J. Kennedy
  • John D. ScottEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1294)

Abstract

Synthesis of the second messenger cAMP activates a variety of signaling pathways critical for all facets of intracellular regulation. Protein kinase A (PKA) is the major cAMP-responsive effector. Where and when this enzyme is activated has profound implications on the cellular role of PKA. A-Kinase Anchoring Proteins (AKAPs) play a critical role in this process by orchestrating spatial and temporal aspects of PKA action. A popular means of evaluating the impact of these anchored signaling events is to biochemically interfere with the PKA–AKAP interface. Hence, peptide disruptors of PKA anchoring are valuable tools in the investigation of local PKA action. This article outlines the development of PKA isoform-selective disruptor peptides, documents the optimization of cell-soluble peptide derivatives, and introduces alternative cell-based approaches that interrogate other aspects of the PKA–AKAP interface.

Keywords

AKAP cAMP signaling Protein kinase A (PKA) Compartmentalization Anchoring proteins RIAD Ht31 AKAP-IS STAD Rselect 

Notes

Acknowledgements

This work was supported, in whole or in part, by National Institutes of Health Grants 1K22CA154600 to EJK, and DK105542 and DK054441 to JDS.

References

  1. 1.
    Scott JD, Pawson T (2009) Cell signaling in space and time: where proteins come together and when they’re apart. Science 326:1220–1224. doi: 10.1126/science.1175668 CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Carr DW, Stofko-Hahn RE, Fraser ID et al (1991) Interaction of the regulatory subunit (RII) of cAMP-dependent protein kinase with RII-anchoring proteins occurs through an amphipathic helix binding motif. J Biol Chem 266:14188–14192PubMedGoogle Scholar
  3. 3.
    Newlon MG, Roy M, Morikis D et al (2001) A novel mechanism of PKA anchoring revealed by solution structures of anchoring complexes. EMBO J 20:1651–1662. doi: 10.1093/emboj/20.7.1651 CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Gold MG, Lygren B, Dokurno P et al (2006) Molecular basis of AKAP specificity for PKA regulatory subunits. Mol Cell 24:383–395. doi: 10.1016/j.molcel.2006.09.006 CrossRefPubMedGoogle Scholar
  5. 5.
    Welch EJ, Jones BW, Scott JD (2010) Networking with AKAPs: context-dependent regulation of anchored enzymes. Mol Interv 10:86–97. doi: 10.1124/mi.10.2.6 CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Skroblin P, Grossmann S, Schafer G et al (2010) Mechanisms of protein kinase A anchoring. Int Rev Cell Mol Biol 283:235–330. doi: 10.1016/S1937-6448(10)83005-9 CrossRefPubMedGoogle Scholar
  7. 7.
    Dessauer CW (2009) Adenylyl cyclase – A-kinase anchoring protein complexes: the next dimension in cAMP signaling. Mol Pharmacol 76:935–941. doi: 10.1124/mol.109.059345 CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Sanderson JL, Dell’Acqua ML (2011) AKAP signaling complexes in regulation of excitatory synaptic plasticity. Neuroscientist 17:321–336. doi: 10.1177/1073858410384740 CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Diviani D, Dodge-Kafka KL, Li J et al (2011) A-kinase anchoring proteins: scaffolding proteins in the heart. Am J Physiol Heart Circ Physiol 301:H1742–H1753. doi: 10.1152/ajpheart.00569.2011 CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Klauck TM, Faux MC, Labudda K et al (1996) Coordination of three signaling enzymes by AKAP79, a mammalian scaffold protein. Science 271:1589–1592CrossRefPubMedGoogle Scholar
  11. 11.
    Coghlan VM, Hausken ZE, Scott JD (1995) Subcellular targeting of kinases and phosphatases by association with bifunctional anchoring proteins. Biochem Soc Trans 23:592–596PubMedGoogle Scholar
  12. 12.
    Dodge KL, Khouangsathiene S, Kapiloff MS et al (2001) mAKAP assembles a protein kinase A/PDE4 phosphodiesterase cAMP signaling module. EMBO J 20:1921–1930. doi: 10.1093/emboj/20.8.1921 CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Tasken KA, Collas P, Kemmner WA et al (2001) Phosphodiesterase 4D and protein kinase a type II constitute a signaling unit in the centrosomal area. J Biol Chem 276:21999–22002. doi: 10.1074/jbc.C000911200 CrossRefPubMedGoogle Scholar
  14. 14.
    Bauman AL, Soughayer J, Nguyen BT et al (2006) Dynamic regulation of cAMP synthesis through anchored PKA-adenylyl cyclase V/VI complexes. Mol Cell 23:925–931. doi: 10.1016/j.molcel.2006.07.025 CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Taylor SS, Yang J, Wu J et al (2004) PKA: a portrait of protein kinase dynamics. Biochim Biophys Acta 1697:259–269. doi: 10.1016/j.bbapap.2003.11.029 CrossRefPubMedGoogle Scholar
  16. 16.
    Herberg FW, Maleszka A, Eide T et al (2000) Analysis of A-kinase anchoring protein (AKAP) interaction with protein kinase A (PKA) regulatory subunits: PKA isoform specificity in AKAP binding. J Mol Biol 298:329–339. doi: 10.1006/jmbi.2000.3662 CrossRefPubMedGoogle Scholar
  17. 17.
    Aye TT, Mohammed S, van den Toorn HW et al (2009) Selectivity in enrichment of cAMP-dependent protein kinase regulatory subunits type I and type II and their interactors using modified cAMP affinity resins. Mol Cell Proteomics 8:1016–1028. doi: 10.1074/mcp.†M800226-MCP200 CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Lester LB, Coghlan VM, Nauert B et al (1996) Cloning and characterization of a novel A-kinase anchoring protein. AKAP 220, association with testicular peroxisomes. J Biol Chem 271:9460–9465CrossRefPubMedGoogle Scholar
  19. 19.
    Trotter KW, Fraser ID, Scott GK et al (1999) Alternative splicing regulates the subcellular localization of A-kinase anchoring protein 18 isoforms. J Cell Biol 147:1481–1492CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Huang LJ, Durick K, Weiner JA et al (1997) Identification of a novel protein kinase A anchoring protein that binds both type I and type II regulatory subunits. J Biol Chem 272:8057–8064CrossRefPubMedGoogle Scholar
  21. 21.
    Wang Y, Ho TG, Bertinetti D et al (2014) Isoform-selective disruption of AKAP-localized PKA using hydrocarbon stapled peptides. ACS Chem Biol 9:635–642. doi: 10.1021/cb400900r CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Scott JD, Dessauer CW, Tasken K (2013) Creating order from chaos: cellular regulation by kinase anchoring. Annu Rev Pharmacol Toxicol 53:187–210. doi: 10.1146/annurev-pharmtox-011112-140204 CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Carr DW, Hausken ZE, Fraser ID et al (1992) Association of the type II cAMP-dependent protein kinase with a human thyroid RII-anchoring protein. Cloning and characterization of the RII-binding domain. J Biol Chem 267:13376–13382PubMedGoogle Scholar
  24. 24.
    Vijayaraghavan S, Goueli SA, Davey MP et al (1997) Protein kinase A-anchoring inhibitor peptides arrest mammalian sperm motility. J Biol Chem 272:4747–4752CrossRefPubMedGoogle Scholar
  25. 25.
    Alto NM, Soderling SH, Hoshi N et al (2003) Bioinformatic design of A-kinase anchoring protein-in silico: a potent and selective peptide antagonist of type II protein kinase A anchoring. Proc Natl Acad Sci U S A 100:4445–4450. doi: 10.1073/pnas.0330734100 CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Faruque OM, Le-Nguyen D, Lajoix AD et al (2009) Cell-permeable peptide-based disruption of endogenous PKA-AKAP complexes: a tool for studying the molecular roles of AKAP-mediated PKA subcellular anchoring. Am J Physiol Cell Physiol 296:C306–C316. doi: 10.1152/ajpcell.00216.2008 CrossRefPubMedGoogle Scholar
  27. 27.
    Hundsrucker C, Krause G, Beyermann M et al (2006) High-affinity AKAP7delta-protein kinase A interaction yields novel protein kinase A-anchoring disruptor peptides. Biochem J 396:297–306. doi: 10.1042/BJ20051970 CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Christian F, Szaszak M, Friedl S et al (2011) Small molecule AKAP-protein kinase A (PKA) interaction disruptors that activate PKA interfere with compartmentalized cAMP signaling in cardiac myocytes. J Biol Chem 286:9079–9096. doi: 10.1074/jbc.M110.160614 CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Schafer G, Milic J, Eldahshan A et al (2013) Highly functionalized terpyridines as competitive inhibitors of AKAP-PKA interactions. Angew Chem Int Ed Engl 52:12187–12191. doi: 10.1002/anie.201304686 CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Verdine GL, Hilinski GJ (2012) Stapled peptides for intracellular drug targets. Methods Enzymol 503:3–33. doi: 10.1016/B978-0-12-396962-0.00001-X CrossRefPubMedGoogle Scholar
  31. 31.
    Gold MG, Fowler DM, Means CK et al (2013) Engineering A-kinase anchoring protein (AKAP)-selective regulatory subunits of protein kinase A (PKA) through structure-based phage selection. J Biol Chem 288:17111–17121. doi: 10.1074/jbc.M112.447326 CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Burns-Hamuro LL, Ma Y, Kammerer S et al (2003) Designing isoform-specific peptide disruptors of protein kinase A localization. Proc Natl Acad Sci U S A 100:4072–4077. doi: 10.1073/pnas.2628038100 CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Carlson CR, Lygren B, Berge T et al (2006) Delineation of type I protein kinase A-selective signaling events using an RI anchoring disruptor. J Biol Chem 281:21535–21545CrossRefPubMedGoogle Scholar
  34. 34.
    Torheim EA, Jarnaess E, Lygren B et al (2009) Design of proteolytically stable RI-anchoring disruptor peptidomimetics for in vivo studies of anchored type I protein kinase A-mediated signalling. Biochem J 424:69–78. doi: 10.1042/BJ20090933 CrossRefPubMedGoogle Scholar
  35. 35.
    Sarma GN, Kinderman FS, Kim C et al (2010) Structure of D-AKAP2:PKA RI complex: insights into AKAP specificity and selectivity. Structure 18:155–166CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Jarnaess E, Ruppelt A, Stokka AJ et al (2008) Dual specificity A-kinase anchoring proteins (AKAPs) contain an additional binding region that enhances targeting of protein kinase A type I. J Biol Chem 283:33708–33718. doi: 10.1074/jbc.M804807200 CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Bhat SV, Bajwa BS, Dornauer H, de Souza NJ (1977) Structure and stereochemistry of new labdane diterpenoids from Coleus forskohlii Briq. Tetrahedron Lett 19:1669–1672CrossRefGoogle Scholar
  38. 38.
    Seamon KB, Padgett W, Daly JW (1981) Forskolin: unique diterpene activator of adenylate cyclase in membranes and in intact cells. Proc Natl Acad Sci U S A 78:3363–3367CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Patel TB, Du Z, Pierre S et al (2001) Molecular biological approaches to unravel adenylyl cyclase signaling and function. Gene 269:13–25CrossRefPubMedGoogle Scholar
  40. 40.
    Premont RT, Matsuoka I, Mattei MG et al (1996) Identification and characterization of a widely expressed form of adenylyl cyclase. J Biol Chem 271:13900–13907CrossRefPubMedGoogle Scholar
  41. 41.
    Dessauer CW, Scully TT, Gilman AG (1997) Interactions of forskolin and ATP with the cytosolic domains of mammalian adenylyl cyclase. J Biol Chem 272:22272–22277CrossRefPubMedGoogle Scholar
  42. 42.
    Beavo JA, Rogers NL, Crofford OB et al (1970) Effects of xanthine derivatives on lipolysis and on adenosine 3′,5′-monophosphate phosphodiesterase activity. Mol Pharmacol 6:597–603PubMedGoogle Scholar
  43. 43.
    Omori K, Kotera J (2007) Overview of PDEs and their regulation. Circ Res 100:309–327. doi: 10.1161/01.RES.0000256354.95791.f1 CrossRefPubMedGoogle Scholar
  44. 44.
    Robison GA, Butcher RW, Sutherland EW (1968) Cyclic AMP. Annu Rev Biochem 37:149–174. doi: 10.1146/annurev.bi.37.070168.001053 CrossRefPubMedGoogle Scholar
  45. 45.
    Shear M, Insel PA, Melmon KL et al (1976) Agonist-specific refractoriness induced by isoproterenol. Studies with mutant cells. J Biol Chem 251:7572–7576PubMedGoogle Scholar
  46. 46.
    Sugimoto Y, Narumiya S (2007) Prostaglandin E receptors. J Biol Chem 282:11613–11617. doi: 10.1074/jbc.R600038200 CrossRefPubMedGoogle Scholar
  47. 47.
    Zeng L, An S, Goetzl EJ (1998) EP4/EP2 receptor-specific prostaglandin E2 regulation of interleukin-6 generation by human HSB.2 early T cells. J Pharmacol Exp Ther 286:1420–1426PubMedGoogle Scholar
  48. 48.
    Schwede F, Maronde E, Genieser H et al (2000) Cyclic nucleotide analogs as biochemical tools and prospective drugs. Pharmacol Ther 87:199–226CrossRefPubMedGoogle Scholar
  49. 49.
    Zorn M, Maronde E, Jastorff B et al (1993) Differential effects of two structurally related N6-substituted cAMP analogues on C6 glioma cells. Eur J Cell Biol 60:351–357PubMedGoogle Scholar
  50. 50.
    Beavo JA, Brunton LL (2002) Cyclic nucleotide research – still expanding after half a century. Nat Rev Mol Cell Biol 3:710–718. doi: 10.1038/nrm911 CrossRefPubMedGoogle Scholar
  51. 51.
    Walsh DA, Ashby CD, Gonzalez C et al (1971) Krebs EG: purification and characterization of a protein inhibitor of adenosine 3′,5′-monophosphate-dependent protein kinases. J Biol Chem 246:1977–1985PubMedGoogle Scholar
  52. 52.
    Dalton GD, Dewey WL (2006) Protein kinase inhibitor peptide (PKI): a family of endogenous neuropeptides that modulate neuronal cAMP-dependent protein kinase function. Neuropeptides 40:23–34. doi: 10.1016/j.npep.2005.10.002 CrossRefPubMedGoogle Scholar
  53. 53.
    Demaille JG, Peters KA, Fischer EH (1977) Isolation and properties of the rabbit skeletal muscle protein inhibitor of adenosine 3′,5′-monophosphate dependent protein kinases. Biochemistry 16:3080–3086CrossRefPubMedGoogle Scholar
  54. 54.
    Scott JD, Fischer EH, Demaille JG et al (1985) Identification of an inhibitory region of the heat-stable protein inhibitor of the cAMP-dependent protein kinase. Proc Natl Acad Sci U S A 82:4379–4383CrossRefPubMedCentralPubMedGoogle Scholar
  55. 55.
    Scott JD, Fischer EH, Takio K et al (1985) Amino acid sequence of the heat-stable inhibitor of the cAMP-dependent protein kinase from rabbit skeletal muscle. Proc Natl Acad Sci U S A 82:5732–5736CrossRefPubMedCentralPubMedGoogle Scholar
  56. 56.
    Cheng HC, van Patten SM, Smith AJ et al (1985) An active twenty-amino-acid-residue peptide derived from the inhibitor protein of the cyclic AMP-dependent protein kinase. Biochem J 231:655–661PubMedCentralPubMedGoogle Scholar
  57. 57.
    Scott JD, Glaccum MB, Fischer EH et al (1986) Primary-structure requirements for inhibition by the heat-stable inhibitor of the cAMP-dependent protein kinase. Proc Natl Acad Sci U S A 83:1613–1616CrossRefPubMedCentralPubMedGoogle Scholar
  58. 58.
    Glass DB, Cheng HC, Kemp BE et al (1986) Differential and common recognition of the catalytic sites of the cGMP-dependent and cAMP-dependent protein kinases by inhibitory peptides derived from the heat-stable inhibitor protein. J Biol Chem 261:12166–12171PubMedGoogle Scholar
  59. 59.
    Cheng HC, Kemp BE, Pearson RB et al (1986) A potent synthetic peptide inhibitor of the cAMP-dependent protein kinase. J Biol Chem 261:989–992PubMedGoogle Scholar
  60. 60.
    Reed J, De Ropp JS, Trewhella J et al (1989) Conformational analysis of PKI(5–22)amide, the active inhibitory fragment of the inhibitor protein of the cyclic AMP-dependent protein kinase. Biochem J 264:371–380PubMedCentralPubMedGoogle Scholar
  61. 61.
    Glass DB, Feller MJ, Levin LR et al (1992) Structural basis for the low affinities of yeast cAMP-dependent and mammalian cGMP-dependent protein kinases for protein kinase inhibitor peptides. Biochemistry 31:1728–1734CrossRefPubMedGoogle Scholar
  62. 62.
    Hidaka H, Inagaki M, Kawamoto S et al (1984) Isoquinolinesulfonamides, novel and potent inhibitors of cyclic nucleotide dependent protein kinase and protein kinase C. Biochemistry 23:5036–5041CrossRefPubMedGoogle Scholar
  63. 63.
    Chijiwa T, Mishima A, Hagiwara M et al (1990) Inhibition of forskolin-induced neurite outgrowth and protein phosphorylation by a newly synthesized selective inhibitor of cyclic AMP-dependent protein kinase, N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H-89), of PC12D pheochromocytoma cells. J Biol Chem 265:5267–5272PubMedGoogle Scholar
  64. 64.
    Murray AJ (2008) Pharmacological PKA inhibition: all may not be what it seems. Sci Signal 1:re4. doi: 10.1126/scisignal.122re4 CrossRefPubMedGoogle Scholar
  65. 65.
    Rothermel JD, Stec WJ, Baraniak J et al (1983) Inhibition of glycogenolysis in isolated rat hepatocytes by the Rp diastereomer of adenosine cyclic 3′,5′-phosphorothioate. J Biol Chem 258:12125–12128PubMedGoogle Scholar
  66. 66.
    Rothermel JD, Jastorff B, Botelho LH (1984) Inhibition of glucagon-induced glycogenolysis in isolated rat hepatocytes by the Rp diastereomer of adenosine cyclic 3′,5′-phosphorothioate. J Biol Chem 259:8151–8155PubMedGoogle Scholar
  67. 67.
    Gjertsen BT, Mellgren G, Otten A et al (1995) Novel (Rp)-cAMPS analogs as tools for inhibition of cAMP-kinase in cell culture. Basal cAMP-kinase activity modulates interleukin-1 beta action. J Biol Chem 270:20599–20607CrossRefPubMedGoogle Scholar
  68. 68.
    Kinderman FS, Kim C, von Daake S et al (2006) A dynamic mechanism for AKAP binding to RII isoforms of cAMP-dependent protein kinase. Mol Cell 24:397–408CrossRefPubMedCentralPubMedGoogle Scholar
  69. 69.
    Banky P, Newlon MG, Roy M et al (2000) Isoform-specific differences between the type Ialpha and IIalpha cyclic AMP-dependent protein kinase anchoring domains revealed by solution NMR. J Biol Chem 275:35146–35152. doi: 10.1074/jbc.M003961200 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Pharmaceutical and Biomedical SciencesUniversity of Georgia College of PharmacyAthensUSA
  2. 2.Department of Pharmacology, Howard Hughes Medical InstituteUniversity of Washington School of MedicineSeattleUSA

Personalised recommendations