Advertisement

cAMP Signaling pp 131-135 | Cite as

Photoactivatable Adenylyl Cyclases (PACs) as a Tool to Study cAMP Signaling In Vivo: An Overview

  • Marina Efetova
  • Martin SchwärzelEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1294)

Abstract

Photoactivatable adenylyl cyclases (PACs) are proteins that combine the capacity of a photoreceptor with that of an adenylyl cyclase. When ectopically expressed under the control of specific promoters, these naturally occurring proteins become potent transgenic tools that facilitate the increase of cellular cAMP levels by the use of light. Currently, three different PAC transgenes—the euglenoid euPACα and euPACβ, as well as the b eggiatoan bPac—are available. These transgenic tools provide cyclase activity capable of increasing cellular cAMP levels up to a hundredfold with either phasic- or tonic-like kinetic characteristics. Here, we consider the functional features of different cyclases and provide operating guidelines to optimize the use of PACs in vivo.

Keywords

Photoactive adenylyl cyclases PAC–euPACα–euPACβ–bPac–BlaC cAMP-signaling pathway Optogenetics Artificial signaling 

References

  1. 1.
    Iseki M, Matsunaga S, Murakami A et al (2002) A blue-light-activated adenylyl cyclase mediates photoavoidance in Euglena gracilis. Nature 415:1047–1051CrossRefPubMedGoogle Scholar
  2. 2.
    Schroder-Lang S, Schwarzel M, Seifert R et al (2007) Fast manipulation of cellular cAMP levels by light in vivo. Nat Methods 2007(4):39–42CrossRefGoogle Scholar
  3. 3.
    Stierl M, Stumpf P, Udwari D et al (2011) Light modulation of cellular cAMP by a small bacterial photoactivated adenylyl cyclase, bPAC, of the soil bacterium Beggiatoa. J Biol Chem 286:1181–1188CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Ryu MH, Moskvin OV, Siltberg-Liberles J et al (2010) Natural and engineered photoactivated nucleotidyl cyclases for optogenetic applications. J Biol Chem 285:41501–41508CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Berrera M, Dodoni G, Monterisi S et al (2008) Handbook Exp Pharmacol 186:285–298CrossRefGoogle Scholar
  6. 6.
    Bellmann D, Richardt A, Freyberger R et al (2010) Optogenetically induced olfactory stimulation in Drosophila larvae reveals the neuronal basis of odor-aversion behavior. Front Behav Neurosci 2010(4):27Google Scholar
  7. 7.
    Weissenberger S, Schultheis C, Liewald JF et al (2010) PACalpha – an optogenetic tool for in vivo manipulation of cellular cAMP levels, neurotransmitter release, and behavior in Caenorhabditis elegans. J Neurochem 116(4):616–625CrossRefGoogle Scholar
  8. 8.
    Efetova M, Petereit L, Rosiewicz K et al (2013) Separate roles of PKA and EPAC in renal function unraveled by the optogenetic control of cAMP levels in vivo. J Cell Sci 2013(126):778–788CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institute for Biology/NeurobiologyFreie Universität BerlinBerlinGermany

Personalised recommendations