Skip to main content

Methods for Studying microRNA Functions During Stress

  • Protocol
Stress Responses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1292))

Abstract

Constituting 5 % of the human genome, microRNAs represent a sizeable class of gene regulators that is predicted to control the expression of at least 60 % of all protein-coding RNAs. Dysregulation of microRNA function results in developmental defects and pathological diseases such as cancers and neurological disorders. Intriguingly, many phenotypes of microRNA deficiencies are subdued in normal condition but manifested apparently upon stress. Here, we outline experimental methods to monitor the level, targets, and activity of microRNAs as the first few steps to characterize how microRNA functions are altered upon stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marsit CJ, Eddy K, Kelsey KT (2006) MicroRNA responses to cellular stress. Cancer Res 66:10843–10848

    Article  CAS  PubMed  Google Scholar 

  2. Leung AK, Sharp PA (2010) MicroRNA functions in stress responses. Mol Cell 40:205–215

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Mendell JT, Olson EN (2012) MicroRNAs in stress signaling and human disease. Cell 148:1172–1187

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Sturchio E, Colombo T, Boccia P et al (2013) Arsenic exposure triggers a shift in microRNA expression. Sci Total Environ 472C:672–680

    Google Scholar 

  5. Karginov FV, Hannon GJ (2013) Remodeling of Ago2-mRNA interactions upon cellular stress reflects miRNA complementarity and correlates with altered translation rates. Genes Dev 27:1624–1632

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Leung AK, Calabrese JM, Sharp PA (2006) Quantitative analysis of Argonaute protein reveals microRNA-dependent localization to stress granules. Proc Natl Acad Sci U S A 103:18125–18130

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Wu PH, Isaji M, Carthew RW (2013) Functionally diverse microRNA effector complexes are regulated by extracellular signaling. Mol Cell 52:113–123

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Leung AK, Young AG, Bhutkar A et al (2011) Genome-wide identification of Ago2 binding sites from mouse embryonic stem cells with and without mature microRNAs. Nat Struct Mol Biol 18:237–244

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Hafner M, Landthaler M, Burger L et al (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141:129–141

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Kishore S, Jaskiewicz L, Burger L et al (2011) A quantitative analysis of CLIP methods for identifying binding sites of RNA-binding proteins. Nat Methods 8:559–564

    Article  CAS  PubMed  Google Scholar 

  11. Leung AK, Vyas S, Rood JE et al (2011) Poly(ADP-ribose) regulates stress responses and microRNA activity in the cytoplasm. Mol Cell 42:489–499

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  13. Ingolia NT, Brar GA, Rouskin S et al (2012) The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nat Protoc 7:1534–1550

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Vourekas A, Mourelatos Z (2014) HITS-CLIP (CLIP-Seq) for mouse Piwi proteins. Methods Mol Biol 1093:73–95

    Article  PubMed  Google Scholar 

  15. Kincaid RP, Sullivan CS (2012) Virus-encoded microRNAs: an overview and a look to the future. PLoS Pathog 8:e1003018

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Huntzinger E, Izaurralde E (2011) Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 12:99–110

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by Department of Defense Breast Cancer Research Program Idea Award #BC101881 to A.K.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony K. L. Leung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ando, Y., Leung, A.K.L. (2015). Methods for Studying microRNA Functions During Stress. In: Oslowski, C. (eds) Stress Responses. Methods in Molecular Biology, vol 1292. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2522-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2522-3_9

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2521-6

  • Online ISBN: 978-1-4939-2522-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics