Skip to main content

Analysis of the Heat Shock Factor Complex in Mammalian HSP70 Promoter

  • Protocol
Stress Responses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1292))

Abstract

The heat shock response is characterized by the induction of heat shock proteins (HSPs) and is one of prominent mechanisms that regulate proteostasis capacity in the cell. In mammals, heat shock factor 1 (HSF1) regulates the expression of HSPs transcriptionally in both unstressed and stressed cells. Recent reports show that the HSF1-RPA complex constitutively gains access to nucleosomal DNA in part by recruiting a histone chaperone and a chromatin-remodeling component. Here, we describe the strategies to substitute endogenous HSF1 with ectopically expressed HSF1 or its mutant and to detect the occupancy of HSF1 transcription complex including RPA in vivo on two heat shock response elements located close together in the human or mouse HSP70 promoters by chromatin immunoprecipitation assay with high sensitivity and specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lindquist S (1986) The heat-shock response. Annu Rev Biochem 55:1151–1191

    Article  CAS  PubMed  Google Scholar 

  2. Richter K, Haslbeck M, Buchner J (2010) The heat shock response: life on the verge of death. Mol Cell 40:253–266

    Article  CAS  PubMed  Google Scholar 

  3. Hayashida N, Fujimoto M, Tan K, Prakasam R, Shinkawa T, Li L, Ichikawa H, Takii R, Nakai A (2010) Heat shock factor 1 ameliorates proteotoxicity in cooperation with the transcription factor NFAT. EMBO J 29:3459–3469

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Morimoto RI (2008) Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev 22:1427–1438

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Balch WE, Morimoto RI, Dillin A, Kelly JW (2008) Adapting proteostasis for disease intervention. Science 319:916–919

    Article  CAS  PubMed  Google Scholar 

  6. Wu C (1995) Heat shock transcription factors: structure and regulation. Annu Rev Cell Dev Biol 11:441–469

    Article  CAS  PubMed  Google Scholar 

  7. Fuda NJ, Ardehali MB, Lis JT (2009) Defining mechanisms that regulate RNA polymerase II transcription in vivo. Nature 461:186–192

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Weake VM, Workman JL (2010) Inducible gene expression: diverse regulatory mechanisms. Nat Rev Genet 11:426–437

    Article  CAS  PubMed  Google Scholar 

  9. Morimoto RI (1998) Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 12:3788–3796

    Article  CAS  PubMed  Google Scholar 

  10. Akerfelt M, Morimoto RI, Sistonen L (2010) Heat shock factors: integrators of cell stress, development and lifespan. Nat Rev Mol Cell Biol 11:545–555

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Fujimoto M, Nakai A (2010) The heat shock factor family and adaptation to proteotoxic stress. FEBS J 277:4112–4125

    Article  CAS  PubMed  Google Scholar 

  12. Becker PB, Rabindran SK, Wu C (1991) Heat shock-regulated transcription in vitro from a reconstituted chromatin template. Proc Natl Acad Sci U S A 88:4109–4113

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Taylor IC, Workman JL, Schuetz TJ, Kingston RE (1991) Facilitated binding of GAL4 and heat shock factor to nucleosomal templates: differential function of DNA-binding domains. Genes Dev 5:1285–1298

    Article  CAS  PubMed  Google Scholar 

  14. Petesch SJ, Lis JT (2008) Rapid, transcription-independent loss of nucleosomes over a large chromatin domain at Hsp70 loci. Cell 134:74–84

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Smith ST, Petruk S, Sedkov Y, Cho E, Tillib S, Canaani E, Mazo A (2004) Modulation of heat shock gene expression by the TAC1 chromatin-modifying complex. Nat Cell Biol 6:162–167

    Article  CAS  PubMed  Google Scholar 

  16. Zobeck KL, Buckley MS, Zipfel WR, Lis JT (2010) Recruitment timing and dynamics of transcription factors at the Hsp70 loci in living cells. Mol Cell 40:965–975

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Petesch SJ, Lis JT (2012) Activator-induced spread of poly(ADP-ribose) polymerase promotes nucleosome loss at Hsp70. Mol Cell 45:64–74

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Westwood JT, Clos J, Wu C (1991) Stress-induced oligomerization and chromosomal relocalization of heat-shock factor. Nature 353:822–827

    Article  CAS  PubMed  Google Scholar 

  19. Guertin MJ, Lis JT (2010) Chromatin landscape dictates HSF binding to target DNA elements. PLoS Genet 6:e1001114

    Article  PubMed Central  PubMed  Google Scholar 

  20. Sullivan EK, Weirich CS, Guyon JR, Sif S, Kingston RE (2001) Transcriptional activation domains of human heat shock factor 1 recruit human SWI/SNF. Mol Cell Biol 21:5826–5837

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Fan HY, He X, Kingston RE, Narlikar GJ (2003) Distinct strategies to make nucleosomal DNA accessible. Mol Cell 11:1311–1322

    Article  CAS  PubMed  Google Scholar 

  22. Mosser DD, Theodorakis NG, Morimoto RI (1998) Coordinate changes in heat shock element-binding activity and HSP70 gene transcription rates in human cells. Mol Cell Biol 8:4736–4744

    Google Scholar 

  23. Santos SD, Saraiva MJ (2004) Enlarged ventricles, astrogliosis and neurodegeneration in heat shock factor 1 null mouse brain. Neuroscience 126:657–663

    Article  CAS  PubMed  Google Scholar 

  24. Takaki E, Fujimoto M, Sugahara K, Nakahari T, Yonemura S, Tanaka Y, Hayashida N, Inouye S, Takemoto T, Yamashita H, Nakai A (2006) Maintenance of olfactory neurogenesis requires HSF1, a major heat shock transcription factor in mice. J Biol Chem 281:4931–4937

    Article  CAS  PubMed  Google Scholar 

  25. Homma S, Jin X, Wang G, Tu N, Min J, Yanasak N, Mivechil NF (2007) Demyelination, astrogliosis, and accumulation of ubiquitinated proteins, hallmarks of CNS disease in hsf1-deficient mice. J Neurosci 27:7974–7986

    Article  CAS  PubMed  Google Scholar 

  26. Uchida S, Hara K, Kobayashi A, Fujimoto M, Otsuki K, Yamagata H, Hobara T, Abe N, Higuchi F, Shibata T, Hasegawa S, Kida S, Nakai A, Watanabe Y (2011) Impaired hippocampal spinogenesis and neurogenesis and altered affective behavior in mice lacking heat shock factor 1. Proc Natl Acad Sci U S A 108:1681–1686

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Takaki E, Fujimoto M, Nakahari T, Yonemura S, Miyata Y, Hayashida N, Yamamoto K, Vallee RB, Mikuriya T, Sugahara K, Yamashita H, Inouye S, Nakai A (2007) Heat shock transcription factor 1 is required for maintenance of ciliary beating in mice. J Biol Chem 282:37285–37292

    Article  CAS  PubMed  Google Scholar 

  28. Inouye S, Izu H, Takaki E, Suzuki H, Shirai M, Yokota Y, Ichikawa H, Fujimoto M, Nakai A (2004) Impaired IgG production in mice deficient for heat shock transcription factor 1. J Biol Chem 279:38701–38709

    Article  CAS  PubMed  Google Scholar 

  29. Zheng H, Li Z (2004) Cutting edge: cross-presentation of cell-associated antigens to MHC class I molecule is regulated by a major transcription factor for heat shock proteins. J Immunol 173:5929–5933

    Article  CAS  PubMed  Google Scholar 

  30. Trinklein ND, Murray JI, Hartman SJ, Botstein D, Myers RM (2004) The role of heat shock transcription factor 1 in the genome-wide regulation of the mammalian heat shock response. Mol Biol Cell 15:1254–1261

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Santagata S, Mendillo ML, Tang YC, Subramanian A, Perley CC, Roche SP, Wong B, Narayan R, Kwon H, Koeva M, Amon A, Golub TR, Porco JA Jr, Whitesell L, Lindquist S (2013) Tight coordination of protein translation and HSF1 activation supports the anabolic malignant state. Science 341:1238303

    Article  PubMed Central  PubMed  Google Scholar 

  32. Vihervaara A, Sergelius C, Vasara J, Blom MA, Elsing AN, Roos-Mattjus P, Sistonen L (2013) Transcriptional response to stress in the dynamic chromatin environment of cycling and mitotic cells. Proc Natl Acad Sci U S A 110:E3388–E3397

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Inouye S, Fujimoto M, Nakamura T, Takaki E, Hayashida N, Hai T, Nakai A (2007) Heat shock transcription factor 1 opens chromatin structure of interleukin-6 promoter to facilitate binding of an activator or a repressor. J Biol Chem 282:33210–33217

    Article  CAS  PubMed  Google Scholar 

  34. Takii R, Inouye S, Fujimoto M, Nakamura T, Shinkawa T, Prakasam R, Tan K, Hayashida N, Ichikawa H, Hai T, Nakai A (2010) Heat shock transcription factor 1 inhibits expression of IL-6 through activating transcription factor 3. J Immunol 184:1041–1048

    Article  CAS  PubMed  Google Scholar 

  35. Hayashida N, Fujimoto M, Nakai A (2011) Transcription factor cooperativity with heat shock factor 1. Transcription 2:91–94

    Article  PubMed Central  PubMed  Google Scholar 

  36. Fujimoto M, Takaki E, Takii R, Tan K, Prakasam R, Hayashida N, Iemura S, Natsume T, Nakai A (2012) RPA assists HSF1 access to nucleosomal DNA by recruiting histone chaperone FACT. Mol Cell 48:182–194

    Article  CAS  PubMed  Google Scholar 

  37. Wold MS (1997) Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu Rev Biochem 66:61–92

    Article  CAS  PubMed  Google Scholar 

  38. Zaret KS, Carroll JS (2011) Pioneer transcription factors: establishing competence for gene expression. Genes Dev 25:2227–2241

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Magnani L, Eeckhoute J, Lupien M (2011) Pioneer factors: directing transcriptional regulators within the chromatin environment. Trends Genet 27:465–474

    Article  CAS  PubMed  Google Scholar 

  40. Inouye S, Katsuki K, Izu H, Fujimoto M, Sugahara K, Yamada S, Shinkai Y, Oka Y, Katoh Y, Nakai A (2003) Activation of heat shock genes is not necessary for protection by heat shock transcription factor 1 against cell death due to a single exposure to high temperatures. Mol Cell Biol 23:5882–5895

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Li LP, Schlag PM, Blankenstein T (1997) Transient expression of SV 40 large T antigen by Cre/LoxP-mediated site-specific deletion in primary human tumor cells. Hum Gene Ther 8:1695–1700

    Article  CAS  PubMed  Google Scholar 

  42. Fujimoto M, Hayashida N, Katoh T, Oshima K, Shinkawa T, Prakasam R, Tan K, Inouye S, Takii R, Nakai A (2010) A novel mouse HSF3 has the potential to activate non-classical heat shock genes during heat shock. Mol Biol Cell 21:106–116

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Fujimoto M, Oshima I, Shinkawa T, Wang B, Inouye S, Hayashida N, Takii R, Nakai A (2008) Analysis of HSF4 binding regions reveals its necessity for gene regulation during development and heat shock response in mouse lenses. J Biol Chem 283:29961–29970

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Shinkawa T, Tan K, Fujimoto M, Hayashida N, Yamamoto K, Takaki E, Takii R, Prakasam R, Inouye S, Mezger V, Nakai A (2011) Heat shock factor 2 is required for maintaining proteostasis against febrile range thermal stress and polyglutamine aggregation. Mol Biol Cell 22:3571–3583

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Tanabe M, Sasai N, Nagata K, Liu X-D, Liu P-CC, Thiele DJ, Nakai A (1999) The mammalian HSF4 gene generates both an activator and a repressor of heat shock genes by alternative splicing. J Biol Chem 274:27845–27856

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported in part by MEXT/JSPS KAKENHI Grant Number 3307, 24390081, 25430090, 25440010, the Takeda Science Foundation Special Project Research, the Uehara Memorial Foundation, and the Yamaguchi University Research Project on STRESS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Nakai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Fujimoto, M., Takii, R., Hayashida, N., Nakai, A. (2015). Analysis of the Heat Shock Factor Complex in Mammalian HSP70 Promoter. In: Oslowski, C. (eds) Stress Responses. Methods in Molecular Biology, vol 1292. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2522-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2522-3_4

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2521-6

  • Online ISBN: 978-1-4939-2522-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics