Skip to main content

Adaptation of the Secretory Pathway in Cancer Through IRE1 Signaling

  • Protocol
Stress Responses

Abstract

The unfolded protein response (UPR) was originally identified as a signaling network coordinating adaptive and apoptotic responses to accumulation of unfolded proteins in the endoplasmic reticulum (ER). More recent work has shown that UPR signaling can be triggered by a multitude of cellular events and that the UPR plays a critical role in the prevention of cell transformation but also in tumor development. This has been particularly well illustrated with studies on one of the three major ER stress sensors, IRE1. This ER resident type I transmembrane protein senses luminal ER stress and transduce signals through its cytosolic RNase activity. IRE1 signaling has been shown to contribute to the progression of solid tumors through pro-angiogenic mechanisms. Herein, we expose the methodologies for investigating IRE1 signaling in tumor cells and in tumors. Moreover, we show that selective pharmacological inhibition of IRE1 RNase activity sensitizes tumor cells to ER stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kozutsumi Y, Segal M, Normington K, Gething MJ, Sambrook J (1988) The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature 332:462–464

    Article  CAS  PubMed  Google Scholar 

  2. Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334:1081–1086

    Article  CAS  PubMed  Google Scholar 

  3. Kimata Y, Kohno K (2011) Endoplasmic reticulum stress-sensing mechanisms in yeast and mammalian cells. Curr Opin Cell Biol 23:135–142

    Article  CAS  PubMed  Google Scholar 

  4. Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D (2000) Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2:326–332

    Article  CAS  PubMed  Google Scholar 

  5. Hetz C (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 13:89–102

    CAS  PubMed  Google Scholar 

  6. Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M et al (2000) Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 6:1099–1108

    Article  CAS  PubMed  Google Scholar 

  7. Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M et al (2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11:619–633

    Article  CAS  PubMed  Google Scholar 

  8. Lerner AG, Upton JP, Praveen PV, Ghosh R, Nakagawa Y, Igbaria A et al (2012) IRE1alpha induces thioredoxin-interacting protein to activate the NLRP3 inflammasome and promote programmed cell death under irremediable ER stress. Cell Metab 16:250–264

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Novoa I, Zeng H, Harding HP, Ron D (2001) Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2alpha. J Cell Biol 153:1011–1022

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Haze K, Yoshida H, Yanagi H, Yura T, Mori K (1999) Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell 10:3787–3799

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Asada R, Kanemoto S, Kondo S, Saito A, Imaizumi K (2011) The signalling from endoplasmic reticulum-resident bZIP transcription factors involved in diverse cellular physiology. J Biochem 149:507–518

    Article  CAS  PubMed  Google Scholar 

  12. Lee K, Tirasophon W, Shen X, Michalak M, Prywes R, Okada T et al (2002) IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes Dev 16:452–466

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Yamamoto K, Sato T, Matsui T, Sato M, Okada T, Yoshida H et al (2007) Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6alpha and XBP1. Dev Cell 13:365–376

    Article  CAS  PubMed  Google Scholar 

  14. Shoulders MD, Ryno LM, Genereux JC, Moresco JJ, Tu PG, Wu C et al (2013) Stress-independent activation of XBP1s and/or ATF6 reveals three functionally diverse ER proteostasis environments. Cell Rep 3(4):1279–1292

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP et al (2002) IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415:92–96

    Article  CAS  PubMed  Google Scholar 

  16. Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107:881–891

    Article  CAS  PubMed  Google Scholar 

  17. Acosta-Alvear D, Zhou Y, Blais A, Tsikitis M, Lents NH, Arias C et al (2007) XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks. Mol Cell 27:53–66

    Article  CAS  PubMed  Google Scholar 

  18. Lee A-H, Iwakoshi NN, Glimcher LH (2003) XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol 23:7448–7459

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP et al (2000) Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287:664–666

    Article  CAS  PubMed  Google Scholar 

  20. Han D, Lerner AG, Vande Walle L, Upton J-P, Xu W, Hagen A et al (2009) IRE1alpha kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates. Cell 138:562–575

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Hollien J, Lin JH, Li H, Stevens N, Walter P, Weissman JS (2009) Regulated Ire1-dependent decay of messenger RNAs in mammalian cells. J Cell Biol 186:323–331

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Hollien J, Weissman JS (2006) Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. Science 313:104–107

    Article  CAS  PubMed  Google Scholar 

  23. Oikawa D, Tokuda M, Hosoda A, Iwawaki T (2010) Identification of a consensus element recognized and cleaved by IRE1 alpha. Nucleic Acids Res 38:6265–6273

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Upton JP, Wang L, Han D, Wang ES, Huskey NE, Lim L et al (2012) IRE1alpha cleaves select microRNAs during ER stress to derepress translation of proapoptotic Caspase-2. Science 338:818–822

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Dai BH, Geng L, Wang Y, Sui CJ, Xie F, Shen RX et al (2013) microRNA-199a-5p protects hepatocytes from bile acid-induced sustained endoplasmic reticulum stress. Cell Death Dis 4:e604

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Maurel M, Chevet E (2013) Endoplasmic reticulum stress signaling: the microRNA connection. Am J Physiol Cell Physiol 304:C1117–C1126

    Article  CAS  PubMed  Google Scholar 

  27. Maurel M, Dejeans N, Taouji S, Chevet E, Grosset CF (2013) MicroRNA-1291-mediated silencing of IRE1alpha enhances Glypican-3 expression. RNA 19:778–788

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Auf G, Jabouille A, Guerit S, Pineau R, Delugin M, Bouchecareilh M et al (2010) Inositol-requiring enzyme 1alpha is a key regulator of angiogenesis and invasion in malignant glioma. Proc Natl Acad Sci U S A 107:15553–15558

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Drogat B, Auguste P, Nguyen DT, Bouchecareilh M, Pineau R, Nalbantoglu J et al (2007) IRE1 signaling is essential for ischemia-induced vascular endothelial growth factor-A expression and contributes to angiogenesis and tumor growth in vivo. Cancer Res 67:6700–6707

    Article  CAS  PubMed  Google Scholar 

  30. Moenner M, Pluquet O, Bouchecareilh M, Chevet E (2007) Integrated endoplasmic reticulum stress responses in cancer. Cancer Res 67:10631–10634

    Article  CAS  PubMed  Google Scholar 

  31. Pluquet O, Dejeans N, Bouchecareilh M, Lhomond S, Pineau R, Higa A et al (2013) Posttranscriptional regulation of PER1 underlies the oncogenic function of IREalpha. Cancer Res 73:4732–4743

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Hetz C, Chevet E, Harding HP (2013) Targeting the unfolded protein response in disease. Nat Rev Drug Discov 12:703–719

    Article  CAS  PubMed  Google Scholar 

  33. Volkmann K, Lucas JL, Vuga D, Wang X, Brumm D, Stiles C et al (2011) Potent and selective inhibitors of the inositol-requiring enzyme 1 endoribonuclease. J Biol Chem 286:12743–12755

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Dejeans N, Pluquet O, Lhomond S, Grise F, Bouchecareilh M, Juin A et al (2012) Autocrine control of glioma cells adhesion and migration through IRE1alpha-mediated cleavage of SPARC mRNA. J Cell Sci 125:4278–4287

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by grants from INSERM, Institut National du Cancer (INCa), La Ligue Contre le Cancer to EC. S.L. was supported by a PhD scholarship from the French government, and N.D. was supported by a postdoctoral fellowship from the Fondation de France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Chevet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lhomond, S. et al. (2015). Adaptation of the Secretory Pathway in Cancer Through IRE1 Signaling. In: Oslowski, C. (eds) Stress Responses. Methods in Molecular Biology, vol 1292. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2522-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2522-3_13

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2521-6

  • Online ISBN: 978-1-4939-2522-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics