Skip to main content

Development of Microfluidic Devices for the Manipulation of Neuronal Synapses

  • Protocol
  • First Online:

Part of the book series: Neuromethods ((NM,volume 103))

Abstract

Key determinants in the development of complex morphology and function are the cues present in a cell’s environment and its response to them. Primary among these extracellular factors is the presence and influence of neighboring cells. It is crucial, therefore, in studying development to be able to replicate in vitro these network-like conditions. This is especially true of neuroscience, tissue engineering, and clinical biology, where network formation and function are critical aspects of any investigation.

Here we describe an easy and inexpensive technique based on microfluidics that provides a high degree of control in positioning and guiding cells, thereby enabling the laying down of desired cellular networks. This approach facilitates the study of synaptic connections where information is communicated between neurons. Such microscale devices are increasingly being employed for studying neurons in highly controlled environments wherein different regions of a network, or even a cell, are cultured in fluidically isolated compartments. Enhanced strategies such as highly regulated manipulations of fluid flow and physical guidance cues when combined with this compartmentalization provide an unparalleled degree of spatiotemporal control over the conformation of the neural network and the stimulation of synapses. This facilitates high-resolution investigations despite the cellular complexity. Consequently, the microfluidic culture platform presents an unparalleled context for unraveling the changes occurring at the microscale and nanoscale of synaptic connections, thereby aiding elucidation of the nuances of neuronal development, wiring, and function.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Nauen DW (2011) Methods of measuring activity at individual synapses: a review of techniques and the findings they have made possible. J Neurosci Methods 194:195–205. doi:10.1016/j.jneumeth.2010.09.011

    Article  PubMed  Google Scholar 

  2. Forti L, Bossi M, Bergamaschi A et al (1997) Loose-patch recordings of single quanta at individual hippocampal synapses. Nature 388:874–878. doi:10.1038/42251

    Article  CAS  PubMed  Google Scholar 

  3. Katz B, Miledi R (1965) The effect of calcium on acetylcholine release from motor nerve terminals. Proc R Soc B Biol Sci 161:496–503. doi:10.1098/rspb.1965.0017

    Article  CAS  Google Scholar 

  4. Wang DO, Kim SM, Zhao Y et al (2009) Synapse- and stimulus-specific local translation during long-term neuronal plasticity. Science 324:1536–1540. doi:10.1126/science.1173205

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Liu G, Tsien RW (1995) Synaptic transmission at single visualized hippocampal boutons. Neuropharmacology 34:1407–1421. doi:10.1016/0028-3908(95)00143-T

    Article  CAS  PubMed  Google Scholar 

  6. Kirischuk S, Veselovsky N, Grantyn R (1999) Relationship between presynaptic calcium transients and postsynaptic currents at single gamma-aminobutyric acid (GABA)ergic boutons. Proc Natl Acad Sci U S A 96:7520–7525

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Rammes G, Eder M, Zieglgänsberger W, Dodt H-U (2007) Infrared-guided laser stimulation as a tool for elucidating the synaptic site of expression of long-term synaptic plasticity. Methods Mol Biol 403:113–122. doi:10.1007/978-1-59745-529-9_7

    Article  CAS  PubMed  Google Scholar 

  8. Stirman JN, Brauner M, Gottschalk A, Lu H (2010) High-throughput study of synaptic transmission at the neuromuscular junction enabled by optogenetics and microfluidics. J Neurosci Methods 191:90–93. doi:10.1016/j.jneumeth.2010.05.019

    Article  PubMed Central  PubMed  Google Scholar 

  9. Campenot RB (1977) Local control of neurite development by nerve growth factor. Proc Natl Acad Sci 74:4516–4519. doi:10.1073/pnas.74.10.4516

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Yang IH, Siddique R, Hosmane S et al (2009) Compartmentalized microfluidic culture platform to study mechanism of paclitaxel-induced axonal degeneration. Exp Neurol 218:124–128. doi:10.1016/j.expneurol.2009.04.017

    Article  CAS  PubMed  Google Scholar 

  11. Taylor AM, Blurton-Jones M, Rhee SW et al (2005) A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nat Methods 2:599–605. doi:10.1038/nmeth777

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Millet LJ, Gillette MU (2012) New perspectives on neuronal development via microfluidic environments. Trends Neurosci 35:752–761. doi:10.1016/j.tins.2012.09.001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Croushore CA, Sweedler JV (2013) Microfluidic systems for studying neurotransmitters and neurotransmission. Lab Chip 13:1666–1676. doi:10.1039/c3lc41334a

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Marimuthu M, Kim S (2011) Microfluidic cell coculture methods for understanding cell biology, analyzing bio/pharmaceuticals, and developing tissue constructs. Anal Biochem 413:81–89. doi:10.1016/j.ab.2011.02.027

    Article  CAS  PubMed  Google Scholar 

  15. Wang J, Ren L, Li L et al (2009) Microfluidics: a new cosset for neurobiology. Lab Chip 9:644–652. doi:10.1039/b813495b

    Article  CAS  PubMed  Google Scholar 

  16. Walker GM, Zeringue HC, Beebe DJ (2004) Microenvironment design considerations for cellular scale studies. Lab Chip 4:91–97. doi:10.1039/b311214d

    Article  CAS  PubMed  Google Scholar 

  17. Taylor AM, Dieterich DC, Ito HT et al (2010) Microfluidic local perfusion chambers for the visualization and manipulation of synapses. Neuron 66:57–68. doi:10.1016/j.neuron.2010.03.022

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. McDonald JC, Duffy DC, Anderson JR et al (2000) Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21:27–40. doi:10.1002/(SICI)1522-2683(20000101)21:1<27::AID-ELPS27>3.0.CO;2-C

    Article  CAS  PubMed  Google Scholar 

  19. Mata A, Fleischman AJ, Roy S (2005) Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems. Biomed Microdevices 7:281–293. doi:10.1007/s10544-005-6070-2

    Article  CAS  PubMed  Google Scholar 

  20. Sia SK, Whitesides GM (2003) Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 24:3563–3576. doi:10.1002/elps.200305584

    Article  CAS  PubMed  Google Scholar 

  21. Millet LJ, Stewart ME, Sweedler JV et al (2007) Microfluidic devices for culturing primary mammalian neurons at low densities. Lab Chip 7:987–994. doi:10.1039/b705266a

    Article  CAS  PubMed  Google Scholar 

  22. Millet LJ, Stewart ME, Nuzzo RG, Gillette MU (2010) Guiding neuron development with planar surface gradients of substrate cues deposited using microfluidic devices. Lab Chip 10:1525–1535. doi:10.1039/c001552k

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Fosser KA, Nuzzo RG (2003) Fabrication of patterned multicomponent protein gradients and gradient arrays using microfluidic depletion. Anal Chem 75:5775–5782. doi:10.1021/ac034634a

    Article  CAS  PubMed  Google Scholar 

  24. Keenan TM, Folch A (2008) Biomolecular gradients in cell culture systems. Lab Chip 8:34–57. doi:10.1039/b711887b

    Article  CAS  PubMed  Google Scholar 

  25. Rhee SW, Taylor AM, Cribbs DH et al (2007) External force-assisted cell positioning inside microfluidic devices. Biomed Microdevices 9:15–23. doi:10.1007/s10544-006-9002-x

    Article  PubMed  Google Scholar 

  26. Banker G, Goslin K (1998) Culturing nerve cells. Cell Mol Neurosci Ser 2nd Ed., M:666

    Google Scholar 

  27. Barbati AC, Fang C, Banker GA, Kirby BJ (2013) Culture of primary rat hippocampal neurons: design, analysis, and optimization of a microfluidic device for cell seeding, coherent growth, and solute delivery. Biomed Microdevices 15:97–108. doi:10.1007/s10544-012-9691-2

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Peyrin J-M, Deleglise B, Saias L et al (2011) Axon diodes for the reconstruction of oriented neuronal networks in microfluidic chambers. Lab Chip 11:3663–3673. doi:10.1039/c1lc20014c

    Article  CAS  PubMed  Google Scholar 

  29. Southam KA, King AE, Blizzard CA et al (2013) Microfluidic primary culture model of the lower motor neuron-neuromuscular junction circuit. J Neurosci Methods 218:164–169. doi:10.1016/j.jneumeth.2013.06.002

    Article  PubMed  Google Scholar 

  30. Shi M, Majumdar D, Gao Y et al (2013) Glia co-culture with neurons in microfluidic platforms promotes the formation and stabilization of synaptic contacts. Lab Chip 13:3008–3021. doi:10.1039/c3lc50249j

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Majumdar D, Gao Y, Li D, Webb DJ (2011) Co-culture of neurons and glia in a novel microfluidic platform. J Neurosci Methods 196:38–44. doi:10.1016/j.jneumeth.2010.12.024

    Article  PubMed Central  PubMed  Google Scholar 

  32. Lopacinska JM, Emneus J, Dufva M (2013) Poly(Dimethylsiloxane) (PDMS) Affects Gene Expression in PC12 Cells Differentiating into Neuronal-Like Cells. PLoS One. doi:10.1371/journal.pone.0053107

    Google Scholar 

  33. Discher DE, Janmey P, Wang Y (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143. doi:10.1126/science.1116995

    Article  CAS  PubMed  Google Scholar 

  34. Saha K, Keung AJ, Irwin EF et al (2008) Substrate modulus directs neural stem cell behavior. Biophys J 95:4426–4438. doi:10.1529/biophysj.108.132217

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Botzolakis EJ, Maheshwari A, Feng HJ et al (2009) Achieving synaptically relevant pulses of neurotransmitter using PDMS microfluidics. J Neurosci Methods 177:294–302. doi:10.1016/j.jneumeth.2008.10.014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank past and present members of the Gillette lab, especially the Neuro-Nano group, for insightful discussions. Support from the National Institute of Mental Health (MH101655) and the National Science Foundation (NSF STC CBET 093951 and IOS 1354913 to M. U. G. and IGERT CMMB 0965918 to A. J.) is gratefully acknowledged. A part of this review was written while M. U. Gillette was a visiting scholar at the Friday Harbor Laboratories, University of Washington.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martha U. Gillette .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Jain, A., Gillette, M.U. (2015). Development of Microfluidic Devices for the Manipulation of Neuronal Synapses. In: Biffi, E. (eds) Microfluidic and Compartmentalized Platforms for Neurobiological Research. Neuromethods, vol 103. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2510-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2510-0_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2509-4

  • Online ISBN: 978-1-4939-2510-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics